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Abstract

This paper is concerned with the modeling of infectious disease spread in a composite space-time domain under conditions
of uncertainty. We focus on stochastic modeling that accounts for basic mechanisms of disease distribution and multi-
sourced in situ uncertainties. Starting from the general formulation of population migration dynamics and the specification
of transmission and recovery rates, the model studies the functional formulation of the evolution of the fractions of
susceptible-infected-recovered individuals. The suggested approach is capable of: a) modeling population dynamics within
and across localities, b) integrating the disease representation (i.e. susceptible-infected-recovered individuals) with
observation time series at different geographical locations and other sources of information (e.g. hard and soft data,
empirical relationships, secondary information), and c) generating predictions of disease spread and associated parameters
in real time, while considering model and observation uncertainties. Key aspects of the proposed approach are illustrated by
means of simulations (i.e. synthetic studies), and a real-world application using hand-foot-mouth disease (HFMD) data from
China.
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Introduction

Understanding infectious disease patterns (i.e. space-time

variations and/or changes) has always been a challenging affair.

Disease diffusion can vary significantly from place to place and

from time to time for a number of reasons, including

heterogeneity of the hosts and pathogens, physical and social

environments, and interactions across space and time. Moreover,

uncertainties linked to population movement and records of

infected individuals can increase the difficulty of understanding

the spatiotemporal spread of an infectious disease. A number of

key studies have shown that infectious disease spread depends

significantly upon the spatial features of a population [1–5]

whereas major benefits of spatial disease modeling include the

assessment of disease intervention and control strategies (e.g.,

border control and quarantine). Accordingly, several models have

been proposed to quantify the spatial disease features at both

population and individual scales [1,6–8]. Among the best-known

models are the gravity, the spatial micro-simulation, and the

network models [1,6,9]. Most of these models focus primarily on

interactions between the susceptible and infected populations

across geographical locations, without considering the continuous

local population dynamics of disease evolution. This is especially

the case for the gravity model, where the geographical

distribution and interaction patterns of populations are discre-

tized into separated locations. Stochastic ‘‘Susceptible-Infected-

Recovered’’ models (SIR, [10–13]) have been widely implement-

ed to represent disease evolution of populations over time. Spatial

metapopulation approaches extend SIR models to explicitly

account for the local or global population movements between

different geographical locations, in terms of patches or networks

with deterministic or stochastic characteristics [14–16].

The present study proposes a realistic space-time extension of a

purely temporal SIR model, i.e. metapopulation model, in the

context of Bayesian maximum entropy (BME) theory [17,18]. The

space-time BME-SIR model has certain attractive features: (1) it

represents the population dynamics of infectious diseases within

and across localities; (2) it takes into consideration the composite

space-time variation of disease features; (3) it accounts for

observation uncertainties (e.g., in the records of infected individ-

uals); (4) in addition to the susceptible-infected-recovered disease
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dynamics, it integrates different sources of knowledge (e.g., hard

and soft disease data together with epidemic models and physical

laws); and (5) it updates the space-time model parameters in real

time.

Results

Theoretical SIR model vs. simulated data
This simulation (synthetic) study assumes an initial distribution

of infected population fraction, Xs,0, in a gridded domain of size

20620 square cells with unit area. Subsequently, the space-time

distributions of Xs,t, Ys,t, and Zs,t are generated in terms of

Monte-Carlo simulation using the SIR model in Eqs. (1a–c). In

this study, the sptial variability of Xs,0 is described by a covariance

function of the exponential form pX (r)~p0 e{3r=ar , where r

denotes physical distance, p0 ~1 and ar~5. To describe

population movement, we used a Gaussian kernel function, ks,

with bandwidth b~0:5. In this simulation, the population portion

that resides at a certain location and does not migrate is estimated

as

kij~e
{r2

ij
=2b2

(
X

j
e
{r2

ij
=2b2

){1, ð7Þ

where rij is the distance between grid points i and j. Equation (7)

gives kii~q~0:682, i.e. approximately 70% of the population at

each unit cell of the grid has residence time equal to the time step

of the simulation. In this case, the recovery and transmission rates

are assumed to be 0.1 and 0.4, respectively. The simulated space-

time distributions of the infected, Xs,t, susceptible, Ys,t, and

recovered, Zs,t, population fractions are plotted in Figures 1a–d

for t = 5, 10, 20 and 30 (note the changing color scales).

Figure 2 shows how the expected value of the ratio Rc between

the right- and left-handsides of Eq. (S2) (see File S1) varies with the

distance Ds{s’D at different times t = 2, 8, 10 and 30. One sees that

for all times t and distances Ds{s’D, Rc is close to 1 and, hence, the

constraint in Eq. (S2) is satisfied to a good approximation. That

said, the SIR model in Eqs. (1) can be accurately described using a

spatially homogeneous Qt-function.

Similar results have also been obtained for different values of the

parameters p0, ar and b in the corresponding space-time disease

covariance models [19]. As noted earlier, Qt is a monotonically

decreasing function of time t. In addition, Qt should include at least

two parameters that allow variation at t~0 and produce different

rates of decay as t increases; and a third parameter so that at t~0,

Q0[(0, 1), and at t??, Q?§0. For example, one may choose the

function Qt~l exp({cte), where the parameters l[(0,1) and

c,ew0. Other possibilities also exist.

Figure 3 shows empirical estimates of the function wt calculated

in terms of 300 synthetic realizations of the SIR model in Eqs. (1a–

c). One sees that the obtained estimates are fitted well by the

functional form Qt~l exp({cte) with parameters l~1:0006,

c~6:6777|10-6, and e~3:7237. The theoretical covariance of

the infected population fraction is calculated from Eq. (S5) (see File

S1) using Qs, t~Qt~l exp({cte) with l~1:0006, c~6:6777|

10-6, and e~3:7237. Figure 4 compares the theoretical spatial

correlation function of the SIR model at times t = 2, 8, 10, 20, and

30 and the associated empirical correlations calculated directly

from the simulated infected distributions. Calculation of the

former is based on the theoretical covariances obtained from Eq.

(S5) (see File S1) using the aforementioned exponential form of the

Q-function. The latter are empirical estimates of the normalized to

max-1 covariance function at different times t, obtained through

Monte Carlo simulation. For small times t,10, one observes a

very good fit between the empirical and theoretical covariances

across space. However, as t increases and for large distances Ds{s’D
the deviations between simulated and theoretical covariances

become larger. We have investigated the matter to some extent

and found that this is due to tiny differences in the initial condition

cX ;s,0;s’,0, which propagate over time.

SIR model sensitivity analysis
Next, simulations of the infected (Xs,t), susceptible (Ys,t) and

recovered (Zs,t) population fractions are generated assuming

several numerical values for the SIR parameters. Significant

features of the respective temporal evolution curves are illustrated

and discussed in relation to the different scenarios.

Figure 5a presents a comparison of the temporal evolution of

Xs,t (solid lines), Ys,t (dashed lines), and Zs,t (pointed lines) at a

certain location assuming different values of the probability of

infection transmission b~0:1 (red color), 0.2 (blue), 0.3 (green); the

probability of recovery is a~0:1, the population fraction that

resides at the domain of interest is q~0:7, and the kernel

bandwidth is b~0:5. In Fig. 5b, a synthetic representation is given

on the simplex triangle Xs,tzYs,tzZs,t~1 (for a technical

discussion, see [20,21]. The distance between dots corresponds

to time intervals starting from the low right corner of the simplex

triangle. Several intuitive results are quantitatively represented in

Fig. 5a–b. Note that in Fig. 5a, for higher b values: (i) the

maximum infected fraction is greater and it is reached at an earlier

stage; (ii) accordingly, the reduction of the susceptible fraction is

faster with time, and (iii) the increase of the recovered population

fraction is faster. Moreover, as b increases, the limit over time of

the susceptible population fraction, that is the population fraction

which finally remains unaffected by the disease, tends to be closer

to zero. This limiting behavior is more clearly visualized in Fig. 5b.

Fig. 6a presents a comparison of the temporal evolution of Xs,t

(solid lines), Ys,t (dashed lines), and Zs,t (pointed lines) assuming

different values of a~0:3 (red color), 0.4 (blue), 0.6 (green). The

probability of infection transmission is b~0:4, q~0:7, and

b~0:5. As before, Fig. 6b is a simplex triangle representation of

Fig. 6a. Note that variation of a leads to the ‘‘inverse’’ SIR

behavior than that of b in Fig. 5a–b. In Fig. 6a, for smaller values

of a: (i) the maximum infected fraction is greater and it is reached

at an earlier stage; (ii) the reduction of the susceptible fraction is

faster with time, and (iii) the increase of the recovered population

fraction is faster. In this case, the maximum (over time) of the

susceptible population fraction tends to be closer to zero for

smaller values of a. Note that for a = 0.6, more than half of the

population remains free of the disease.

Figure 7a presents a comparison of the temporal evolution of

Xs,t (solid lines), Ys,t (dashed lines), and Zs,t (pointed lines) at a

certain location considering the purely temporal model (red color),

and the spatiotemporal model for two different kernel bandwidths

b~0:5 (blue) and 3 (green); with b~0:4, a~0:1, and q~0:7. As

before, Figure 7b is a simplex triangle representation of Figure 7a.

It is worth noting that independently of the value of b near all

population becomes infected and the maximum infected fraction

remains unaffected, although it is reached at an earlier stage for

smaller spatial spreads (b~0:5 vs. b~3). Also, the reduction of the

susceptible population fraction is slower with time for larger values

of b (b~3 vs. b~0:5). The simplex triangle paths are similar for

the three cases, but the SIR velocities are different as reflected in

the corresponding inter-point distances.

Figure 8a presents a comparison of the temporal evolution of

Xs,t (solid lines), Ys,t (dashed lines), and Zs,t (pointed lines) at a

certain location, again considering the purely temporal model (red

color), and the spatiotemporal model for two different values of

Spatiotemporal Infectious Disease Modeling
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Figure 1. Spatial distribution of SIR population fractions at different times: (a) t = 5, (b) t = 10, (c) t = 20, and (d) t = 30.
doi:10.1371/journal.pone.0072168.g001

Figure 2. Expected value of the ratio Rc at times t~2, 8, 10 and
20.
doi:10.1371/journal.pone.0072168.g002

Figure 3. Empirical estimates of the Q-function fitted by the
functional form Qt~l exp({cte) using the method of least
squares.
doi:10.1371/journal.pone.0072168.g003

Spatiotemporal Infectious Disease Modeling
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q~0 (blue), and 0.7 (green). The kernel bandwidth has been set to

b~0:5, b~0:4, and a~0:1. As before, Figure 8b is a simplex

triangle representation of Fig. 8a. Note that in Fig. 8a, for q~0:7
the increase of the infected population fraction (or equivalently the

reduction of the susceptible fraction) is faster with time than for

q~0. In addition, the maximum infected fraction remains the

same, but it is reached faster in the purely temporal case (red

color), and when a considerable fraction of the population resides

within the domain of interest (q~0:7 vs. q = 0). Similar conclusions

can be drawn from the study of the plots in Fig. 8b, with shape

similarities translated into coincidental paths with different SIR

velocities in the simplex domain.

A Study of Hand-Foot-Mouth Disease Data
In what follows, the theoretical space-time BME-SIR method is

applied to a real-world study of the spread of hand-foot-mouth

disease in China (HFMD; [22]). HFMD is the most common

infectious disease in China [23], hence there is considerable

interest in understanding the evolution of its spatiotemporal

patterns and potential correlations to environmental factors. For

example, Wang (2011) explores HFMD and climate associations

across Eastern China [23]. The HFMD data was obtained from

China Center of Disease Control (see File S1).

The study focuses on a specific set of Chinese counties with

relatively higher disease incidence; in particular, we focus on the

disease evolution in 145 counties that extend between 111uE to

118uE, and 32uN to 37uN (Fig. 9). The data are weekly-aggregated

HFMD rates (cases of infecteds per 10000 people) over a period of

20 weeks that span from September 27–October 3, 2008 (t~1) to

February 7–13, 2009 (t~20). In the example, we account for

uncertainty in the data survey by assuming all observations to be

uncertain measurements. We consider each rate as a randomly

sampled value from a uniform distribution that is 1 unit wide.

Observed rates that were reported to be exactly 0 are represented

by soft uniform distributions with rates between [0, 1]. The soft

intervals width selection is a conservative, arbitrary estimate on the

basis of the recorded national average rates for HFMD (3.69 in

2008 and 8.68 in 2009, based on the corresponding sizes of the

population of China and the reported HFMD cases).

For initial conditions, the initial spatial spread of infecteds,

Xs,t~1, is given by the observed rates at t~1. We start with no

recovered individuals at t = 1. By considering an approximate

disease duration of 1 week, the remaining part of the population

are susceptibles to the disease. For the present illustration, we also

assume the following:

(i) Relocation occurs sparsely during the 20-week study period,

and it is accounted for by means of a Gaussian kernel function ks

of bandwidth b~0:1 that results in factor sizes kii with a mean

value �kkii~0:9755 and a very skewed distribution towards high

values (sample skewness 22.68). This means that on average,

97.55% of the population does not relocate during the study

period.

Figure 4. Theoretical and numerically simulated spatial
correlation functions of the SIR model for different times;
t = 2, 8, 10, 20 and 30.
doi:10.1371/journal.pone.0072168.g004

Figure 5. Comparison of the temporal evolution of infected Xs,t (solid lines), susceptible Ys,t (dashed lines), and recovered Zs,t

(dotted lines) population fractions at a certain location in terms of (a) the temporal variation with different values of the
probability of infection transmission b~0:1 (red color), 0.2 (blue), 0.3 (green). The probability of recovery is a~0:1, the population fraction
that resides inside the domain of interest is q~0:7, and the kernel bandwidth is b~0:5, and (b) the simplex triangle plot.
doi:10.1371/journal.pone.0072168.g005

Spatiotemporal Infectious Disease Modeling
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(ii) Constant recovery as,t~a and transmission bs,t~b proba-

bilities with initial values a~0:1 and b~0:4, and variances

s2
a~0:05 and s2

b~0:1.

The covariances P(tz1Dt) at the subsequent instances are based

on the initial covariance that is computed for the initial spatial

distribution of Xs,t~1. The covariance at t = 1 was estimated from

the observed values at that instance, and was fitted by a correlation

model with a nugget effect equal to 0.07 (rate variance units) and a

spherical model with sill 0.07 (rate variance units) and spatial

range 3u.
On the basis of the above input, the BME-SIR method

produces space-time distributions of the infected Xs,t, susceptible

Ys,t, and recovered Zs,t, population fractions of HFMD

throughout the 20-week study period. At each consecutive time

instance, the general knowledge (BME-SIR model) drives the

model parameters a and b progressively closer to the values that

best interpret the present HFMD dataset. This process is also

guided by updating the model with new specificatory (data)

information at every time step. Figure 10 illustrates how the

predicted parameter values from the current HFMD data reach

equilibrium. The BME-SIR model predicts an approximate

mean transmission rate b&0:17, and an approximate mean

recovery rate a&0:21. One observes that despite the arbitrary

initial values of a and b, relatively accurate parameter estimates

are reached relatively fast within about 2–4 weeks. For the scope

of the present illustration, the above initial values have been

Figure 6. Comparison of the temporal evolution of infected Xs,t (solid lines), susceptible Ys,t (dashed lines), and recovered Zs,t

(dotted lines) population fractions at a certain location in terms of (a) the temporal variation with different values of the
probability of recovery a~0:3 (red color), 0.4 (blue), 0.6 (green). The probability of transmission is b~0:4, the population fraction that resides
inside the domain of interest is q~0:7, and the kernel bandwidth is b~0:5, and (b) the associated simplex triangle plot.
doi:10.1371/journal.pone.0072168.g006

Figure 7. Comparison of the temporal evolution of infected Xs,t (solid lines), susceptible Ys,t (dashed lines), and recovered Zs,t

(dotted lines) population fractions at a certain location in terms of (a) the temporal variation of purely temporal model (red color),
and the spatiotemporal model for two different kernel bandwidth values b~0:5 (blue), 3 (green). The probability of recovery is set to
a~0:1; the probability of transmission is b~0:4, and the population fraction that resides inside the domain of interest is q~0:7, and (b) the
associated simplex triangle plot.
doi:10.1371/journal.pone.0072168.g007

Spatiotemporal Infectious Disease Modeling
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selected rather arbitrarily. In more elaborate examples, it might

be desirable to provide better-informed initial estimates for these

rates. In the absence of expert knowledge, one possible way to

tackle such cases could be to use existing data to obtain SIR-

based regression estimates for the initial values of a and b [24].

Also, maps of the BME-SIR predicted mean of the infected

distributions Xs,t are produced for each of the 20 weeks of this

study. Figure 11 shows these means inside the region of interest at

selected week instances, and Fig. 12 illustrates the corresponding

prediction error for those instances. The prediction error

throughout the study was found to range between 0.0067 and

0.2884. These values are comparable to the corresponding

predicted values, and reflect that the BME-SIR predictions also

account for the uncertainty in the HFMD observations. In

summary, this real-world case study indicates that BME-SIR can

provide an informative overview of the disease evolution. Also, this

application shows how BME-SIR can be effectively used to

estimate the disease spread based on highly uncertain data,

without any distributional assumptions. The BME-SIR estimation

can assimilate both theoretical disease diffusion dynamics and the

uncertain disease space-time data. As a result, the characteristics of

disease evolution can be revealed over time, even in cases when

the disease data are highly uncertain.

Discussion

Characterizing space-time diffusion dynamics is a challenging

effort due to complexities in population movement, disease

transmission and recovery mechanisms, and uncertainties in

observations. SIR models have for a long time been applied to

study population-based disease diffusion at a specific site over time.

To account for spatial diffusion, studies have been focusing on

integrating detailed geographical information into SIR models by

using multiple patches or networks to characterize the population

movements and interactions. The detailed geographical topology

can possibly consider the spatial heterogeneity of disease

transmission. Under the framework of SIR-extended models,

space-time disease diffusion can be studied based on the

knowledge of the parameters of disease dynamics inferred from

data; e.g. transmission rate. However, in most cases, detailed and

accurate information on population interactions is partially

available. In addition, infectious disease data can be sparse and

highly noisy and, therefore, the characteristics of disease dynamics

are highly uncertain, especially at the initial stage of the disease

outbreak. In this study, we account for uncertainties in the

available data, as well as the unknown characteristics of disease

dynamics, by proposing a spatiotemporal BME-SIR method of

infectious disease spread. Based upon the SIR concept, the BME

framework allows space-time disease modeling to account for

patch-based population movements and multiple-sourced uncer-

Figure 8. Comparison of the temporal evolution of infected Xs,t (solid lines), susceptible Ys,t (dashed lines), and recovered Zs,t

(dotted lines) population fractions at a certain location in terms of (a) the temporal variation of the purely temporal model (red
color), and the spatiotemporal model for two different values of the population fraction residing inside the domain of interest q~0
(blue), 0.7 (green). The kernel bandwidth is set to b~0:5, the probability of recovery is a~0:1, and the probability of transmission is set to b~0:4.
(b) The associated simplex triangle plot.
doi:10.1371/journal.pone.0072168.g008

Figure 9. The study region and its location in China.
doi:10.1371/journal.pone.0072168.g009

Spatiotemporal Infectious Disease Modeling
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tainties, including: 1) unknown prior knowledge of disease

dynamics, i.e. transmission and recovery rates, and 2) uncertainties

in disease data from direct or indirect observations.

To gain additional insight of the complete space-time SIR

model, we progressively simplified the model to: (a) be expressed in

a linear state-space form (i.e., using the Q-function approximation),

and (b) be described by analytical solutions (i.e., static population

assumption). Overall, the linearized SIR model showed good

performance in reproducing the infected, susceptible and recov-

ered population fractions, their empirical correlations (Fig. 4), and

in inferring the transmission and recovery rates from data with low

estimation error (see Fig. 13 and the error bars in Figures 14–15)

and minimal computational effort. This makes the developed

BME-SIR model an ideal framework for real-world application

studies, where one needs to model the spread of infectious diseases

in space-time, for different initial conditions, using a minimum

number of parameters. The latter should suffice to reproduce the

covariance structure of the susceptible, infected and recovered

population fractions at different times over the whole simulation

grid. The BME-SIR model effectively achieves this goal using only

two model parameters (transmission and recovery rates), which

can be easily inferred from data and, in more demanding studies,

can vary systematically in both space and time.

For the purposes of disease control, real-time prediction of

space-time disease spread is required by governmental agencies.

For the cases of emerging infectious diseases, real-time prediction

is essential due to higher risks and increased uncertainties in the

infected cases and disease parameters, e.g. reproduction number.

Modeling of the spatiotemporal patterns of emerging disease

spread involves uncertainties from various sources, e.g. model

uncertainty, parameter and data uncertainties. Data assimilation

approaches can continuously incorporate new observations into

the physical process, and has been widely used in a variety of

applications, e.g. geosciences [25,26]; however, relatively few

studies investigated the application of data assimilation approaches

to infectious disease predictions [27]. Kalman filter is one of the

most widely used data assimilation approaches for real-time

prediction. It is based upon the state-space model and assumes the

model and observation uncertainties are Gaussian-distributed.

The BME-SIR method combines the linearized state-space model

(i.e. general knowledge), with disease data with various levels of

uncertainty (i.e. site-specific knowledge), to produce real-time

disease estimates. Similar to the other data assimilation methods

(e.g. Kalman filter), BME-SIR can update the model predictions,

whenever new observations become available. The proposed

spatiotemporal BME-SIR filtering framework can incorporate

multi-sourced uncertainties (like exKF), and produce real-time

disease estimates in a space-time domain. The distinction between

exKF and BME-SIR methods is that BME-SIR can account for

data uncertainties without any underlying distributional assump-

tions. Real-time estimates of infected population fractions as well

as the transmission and recovery rates are shown in Figs. 14 and

15. Note that the estimates obtained by BME-SIR and exKF are

consistently updated as new observations become available. The

parameter values predicted by BME-SIR and exKF reach an

equilibrium after about 10 weeks (see Fig. 10). Spatial maps of the

predicted mean of the infected population fraction, Xs,t, were

produced on a spatial grid of 30625 = 750 nodes for each of the 20

weeks of the study; see Fig. 11.

Figure 10. BME-SIR estimated transmission and recovery rates in the HFMD study.
doi:10.1371/journal.pone.0072168.g010

Spatiotemporal Infectious Disease Modeling
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Various extensions of this work are under development. Among

others, the definition of a continuous-time version of the model

consistent with the discrete-time formulation studied here. Also,

the consideration of heterogeneous propagation of infection

through non-homogeneous kernels associated with spatial spread;

for instance, in terms of spatial deformation accounting for

covariate effects.

Figure 11. BME-SIR predicted population HFMD rates (cases per 10,000 people) in the study region for 4 selected week instances: (a) t = 5, (b) t = 10,
(c) t = 15, and (d) t = 20.
doi:10.1371/journal.pone.0072168.g011

Figure 12. BME-SIR standard error for the predicted HFMD rates shown in Fig. 11.
doi:10.1371/journal.pone.0072168.g012

Spatiotemporal Infectious Disease Modeling
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Methods

The Space-Time Disease Model
Disease spread is a fundamentally spatiotemporal phenomenon,

the rigorous study of which should account for a number of

uncertainty sources (e.g. disease variability, imperfect observation

conditions, population density fluctuations, physiographic features,

meteorological matters). This constitutes sufficient motivation for

extending the original SIR model in the space-time context under

conditions of real world uncertainty. The distribution of the

fraction of infected population is represented as a spatiotemporal

random field Xp~Xs,t [28,29], where p~(s,t) denotes a physical

location with spatial coordinates s~(s1,s2) at time t. Similarly,

Yp~Ys,t and Zp~Zs,t are random fields representing the

distributions, respectively, of the fraction of the population that

is susceptible to become infected and the fraction of the population

that has recovered and is immune. The basic relationships

between Xp, Yp, Zp are, XpzYpzZp~1, Ys,0~1{Xs,0 and

Zs,0~0, where Xs,0, Ys,0, and Zs,0 denote the initial conditions

(IC) of the corresponding population fractions [30]. The proposed

modeling of the combined space-time distributions Xp, Yp, Zp is

described by the following generalized SIR model in continuous

time (for the discrete time case, see [19] and references therein),

Xs,tzdt~qs,t(1{a0s,tdtzb0s,tYs,tdt)Xs,t

z

ð
R2

duks{u,t(1{a0u,tdtzb0u,tYu,tdt)Xu,t

Ys,tzdt~qs,t(1{b0s,tXs,tdt)Ys,t

z

ð
R2

duks{u,t(Yu,t{b0u,tXu,tYu,tdt)

Zs,tzdt~qs,t(Zs,tza0s,tXs,tdt)

z

ð
R2

duks{u,t(Zu,tza0u,tXu,tdt)

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð1a��cÞ

where qs,t is the population fraction that resides (i.e., does not

displace from) at the space-time domain p~(s,t), 1{qs,t is the

fraction that migrates during the time period t?tzdt, ds{u is the

delta function, and ks{s’,t is a spatially homogeneous kernel (e.g.,

Gaussian kernel with finite variance) that controls population

movement across space, with spatial integral being equal to

1{qs,t. In addition, a’s,t is the rate [T{1] that an infected

individual, at the space-time domain p~(s,t), recovers and

becomes immune, and b’s,t is the corresponding rate [T{1] of

infection transmission during an encounter of one infected and

one susceptible individual. Note that a’s,t and b’s,t allow one to

include information about regional topography and local climatic

conditions. Moreover, under conditions of in situ disease control

(quarantine, vaccination etc.), transmission and recovery rates are

time-varying. The stochastic SIR model (1a–c) is, by construction,

a composite space-time representation of disease spread. The

space-time covariances of Xp, Yp, Zp are derived from the SIR

model (details in File S1).

Figure 13. Spatial distribution of sampling locations (data
serving as input to BME-SIR). Circles: hard (accurate) data. Triangles:
soft (uncertain) data.
doi:10.1371/journal.pone.0072168.g013

Figure 14. Comparison between the simulated infected
population fractions at location (s1, s2)~(20, 14),at different
times t, and the corresponding exKF and BME-SIR estimates.
doi:10.1371/journal.pone.0072168.g014

Figure 15. Comparison between the simulated and estimated
recovery rates using the exKF and BME-SIR methods.
doi:10.1371/journal.pone.0072168.g015

(1a-c)
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In the case when qs,t, ks,t, a’s,t and b’s,t vary slowly with t (say

*log t), or they are constant in time (i.e. qs,t~qs, ks,t~ks,

a’s,t~a’s and b’s,t~b’s), Eqs (1a–c) satisfy the following set of

integrodifferential space-time SIR equations:

(qs,t{as,tqs,t{1)
L
Lt

Xs,tzbs,tqs,t
L
Lt

(Ys,tXs,t)

z
Ð

R2 duks{u,t½(1{au,t)
L
Lt

Xu,tzbu,t
L
Lt

(Yu,tXu,t)�~0

(qs,t{1)
L
Lt

Ys,t{bs,tqs,t
L
Lt

(Ys,tXs,t)

z
Ð

R2 duks{u,t½
L
Lt

Yu,t{bu,t
L
Lt

(Yu,tXu,t)�~0

(qs,t{1)
L
Lt

Zs,tzas,tqs,t
L
Lt

(Xs,t)

z
Ð

R2 duks{u,t½
L
Lt

Zu,tzau,t
L
Lt

(Xu,t)�~0

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2a��cÞ

where as,t~a’s,tdt[(0,1� is the probability that an infected indivi-

dual, at p~(s,t), recovers and becomes immune, and

bs,t~b’s,tdt[(0,1� is the probability of infection transmission

during an encounter of one infected and one susceptible

individual.

BME is a stochastic approach for spatiotemporal modeling and

prediction in conditions of space-time heterogeneity and in-situ

uncertainty [31]. BME disease modeling can rigorously integrate

different disease knowledge bases, e.g. laws of disease evolution

dynamics with available space-time disease datasets to provide

informative and accurate predictions of disease spread. BME

distinguishes between two major disease knowledge bases (KBs): (a)

the core or general KB, G-KB, which includes physical and

biological laws (e.g., the SIR model); and (b) the site-specific KB, S-

KB, which includes hard or exact data and soft or uncertain data

(e.g., observations of disease counts across space-time as exact

numerical values or as interval and probability distributions of

possible values). The BME method integrates both knowledge

bases (i.e. K~G|S) in terms of the following fundamental BME

equations [17,18]

Ð
dx(g{g)emT g~0Ð

dxfSemT g{AfK (x)~0

)
, ð3Þ

where the vector x denotes realizations of the distribution of Xp in

space-time (clearly, the equation could be written in terms of Yp

and Zp realizations, as well), g is a vector of functions that

represent stochastically the G-KB under consideration (the bar

denotes statistical expectation), and m is a vector of coefficients that

depend on the space-time coordinates (m is linked to g). BME is not

constrained by assumptions commonly used in the literature, such

as Gaussian probability distribution of disease attributes and linear

estimator forms. In the present case, disease evolution is governed

by the space-time SIR model (1a–c); therefore, g includes the

mean, covariance and cross-covariance functions of Xp, Yp, and

Zp derived from the theoretical space-time SIR model (1a–c) to

account for disease trends and correlation patterns in the

population at different geographical locations and during different

time periods. (More details about the space-time BME-SIR

method will be given later.) fS represents the available S-KB,

which can be direct or indirect disease observations across space

and time in terms of fixed values or probabilistic distributions of

disease attributes. A is a normalization parameter, and fK is the

probability density function (pdf) of estimated disease counts at

each space-time point (the subscript K means that fK is based on

the blending of core and site-specific KBs). g and fS are the inputs

to Eqs. (3a–c), whereas the unknowns m and fK vary from place to

place and from time to time. Estimates of the unknown parameters

in vector m are generally obtained by means of optimization

techniques [32–34]. In this study, since the means and covariances

of the space-time SIR model are used in the G-KB, the unknown

parameters in m can be directly derived from analytical statistical

physics formulas [17]. The estimation of fK at different spatial

locations and temporal instances (i.e. space-time points) is based on

operational Bayesian theory which does not require any distribu-

tional assumptions [35].

Another way to look at Eqs (3) is that they generate a stochastic

solution of the integodifferential SIR equations (2a–c) that –

compared to the standard solutions of general integodifferential

equations— has the unique feature to also account for several

other kinds of available knowledge (hard and soft data, empirical

relationships, secondary information) and multi-sourced uncer-

tainties (in the composite space-time disease variation, the records

of infected individuals etc.). In section IV, the BME-SIR disease

dynamics model will be discussed together with certain simulation

cases, in which the BME-SIR method fuses the SIR disease model

(G-KB) and disease related observations and records (S-KB).

Special Cases of SIR Dynamics with Closed-Form
Solutions

Valuable insight about the spatiotemporal SIR dynamics is

gained by considering some special cases of the SIR model (1a–c).

For example, if the space-time dependence of the infected (Xp) and

the susceptible (Yp) distributions satisfy certain separability

conditions (which assure system linearity), a function Qs,t can be

defined that has a smooth shape similar to that of the covariance

function of Xs,t and Ys,t (details in File S1). For example, Qs,t may

be chosen to be a monotonically decreasing function of time t with

sufficient flexibility to represent the behavior of the population

fraction that is susceptible to infection; see also section VI below.

Let us start by assuming that during the time period of interest

the population is static (i.e., it does not move in space) while the

disease spreads (i.e., qs,t~1), and the infecteds IC (Xs,0) are

spatially homogeneous. Note that in the case when qs,t~1, the

time-independent kernel that controls population movement

across space, ks,t, does not play any role and, hence, the integral

terms in Eqs (1a–c) can be neglected. In this case, Eqs (1a–c)

reduce to

d

dt
Xs,t~({a’s,tzb’s,tws,t)Xs,t

d

dt
Ys,t~{b’s,tws,tXs,t

d

dt
Zs,t~a’s,tXs,t

9>>>>>>=
>>>>>>;

ð4a��cÞ

with ICs, Xs,0, Ys,0~1{Xs,0, Zs,0~0. Qs,t is a function with a

smooth shape similar to that of the covariance function of Xs,t and

Ys,t; see above. In a sense, the SIR model in Eqs. (4a–c) is an

extension, in a composite space-time domain, of the mainstream

and purely temporal SIR model [5,10,12]. The closed-form

solution of Eqs (4a–c) is

(2a-c)

(4a-c)
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Xs,t~As,tXs,0

Ys,t~1{(1zBs,t)Xs,0

Zs,t~Cs,tXs,0

9>=
>; ð5a��cÞ

where, As,t~exp½
Ð t

0
dv({a’s,vzb’s,vQs,v)�, Bs,t~

Ð t

0
dv(b’s,vQs,vAs,v),

Cs,t~
Ð t

0
dv(a’s,vAs,v), and t§0.

The mathematical expressions of the covariance and cross-

covariance functions of the disease variables Xp, Yp and Zp are

shown in Table 1. One can see that all space-time disease

covariance and cross-covariance functions: (a) depend on cX ;s{s’,0

(covariance between the ICs Xs,0 and Xs’,0); and (b) are broadly

non-homogeneous (in space) and non-stationary (in time). In the

case when a’s,t~a’s, b’s,t~b’s,and Qs,t~Qs are constant in time,

the parameters As,t, Bs,t, and Cs,t receive the following closed

analytical forms

As,t~exp½({a’szb’sQs)t�
Bs,t~

b’sQs
{a’szb’sf s

fexp½({a’szb’sQs)t�{1g

Cs,t~
a’s

{a’szb’sf s
fexp½({a’szb’sQs)t�{1g

9>>=
>>; ð6a��cÞ

Below we consider some numerical applications of the SIR model

presented above.

SIR in the BME setting
In practice, spatiotemporal disease modeling is performed in

uncertain conditions, e.g., erratic disease observations, incomplete

prior knowledge of disease transmission and recovery rates [36]. In

most cases of SIR modeling, a rather incomplete knowledge of the

in situ susceptible and recovered population fractions is possible.

The numerical study shows that when the disease observations are

uncertain and follow a non-Gaussian law, the BME method in Eq.

(3)([28,32,37,38]) can further improve updating in the SIR model

by representing erratic observations in the form of probabilistic

data and by incorporating transmission and recovery rate

uncertainties. In the BME framework, the core or general KB

(G) includes the SIR equations and the associated disease

covariance models, whereas the site-specific KB (S) includes the

uncertain infected observations and the initial conditions of the

transmission and recovery rates. The SIR states are then

formulated in the matrix form

X(tz1Dt)~AX(t)zWt

P(tz1Dt)~A
_

P(tDt)A
_T

zQt

P(tz1Dtz1)~(I{P(tz1Dt)HT HP(tz1Dt)HT
� �{1

H)P(tz1Dt)

ð8Þ

where X(t) and X(tz1Dt) are vectors containing the current and

predicted states of infected disease counts and the rates of the SIR

model; i.e. recovery rate a’ and transmission rate b’, respectively. A

and A
_

are the transition and Jacobian matrices characterizing the

dynamics of the SIR model. Wt models the uncertainty of infected

states across space, which cannot be represented by SIR modeling,

and is characterized by the covariance matrix Qt. The observation

matrix H contains only zeros and ones indicating data presence

across space. P(t), P(tz1Dt) and P(tz1Dtz1) are the current,

predicted and updated state covariances. Equation (8) involve the

general KB containing the stochastic properties of disease

dynamics (details of the matrix formulation of Equation (S8)

shown in File S1). Concerning the site-specific KB, for estimation

purposes the hard (accurate) data are randomly sampled over time

at 44 spatial cells of the disease grid mentioned earlier. In addition,

soft (uncertain) data that follow uniform probability distributions

with uncertain ranges are sampled from another set of 29 cells.

The sample locations are shown in Fig. 13.

Numerical comparisons between the simulation results for

model prediction and parameter estimation by the BME-SIR

method are shown in Figs. 14, 15, 16. For comparison purposes,

the results obtained using the extended Kalman filter (exKF) are

also shown (technical details of the exKF SIR model can be found

in [19]). Figure 14 shows that both methods predict almost equally

well the infected population fractions at different times t (mean-

square errors: 23.93 for BME-SIR and 28.92 for the exKF).

Improvements in estimation uncertainty gained by using the

BME-SIR over the exKF method are also shown. Similar results

were obtained for the susceptible and recovered population

fractions. Figs. 15, 16 demonstrate the performance of the two

methods in estimating the transmission and recovery rates at

different times t. One sees that both methods provide effective

Table 1. Covariances and cross-covariances of Xp, Yp and Zp.

Xs’, t’ Ys’, t’ Zs’, t’

Xs,t As,tAs,tcX ;s{s’,0 {As,t(1zBs’,t0 )cX ;s{s’,0 As,tCs’,t’cX ;s{s’,0

Ys, t {As’,t’(1zBs,t)cX ;s{s’,0 (1zBs,t)(1zBs’,t0 )cX ;s{s’,0 {(1zBs,t)Cs’,t0 cX ;s{s’,0

Zs, t As’,t’Cs,tcX ;s{s’,0 {(1zBs’,t0 )Cs,tcX ;s{s’,0 Cs,tCs’,t0 cX ;s{s’,0

doi:10.1371/journal.pone.0072168.t001

Figure 16. Comparison between simulated and estimated
transmission rates using the exKF and BME-SIR methods.
doi:10.1371/journal.pone.0072168.g016

(5a-c)

(6a-c)

Spatiotemporal Infectious Disease Modeling

PLOS ONE | www.plosone.org 11 September 2013 | Volume 8 | Issue 9 | e72168



estimates of the SIR recovery rates at all times, but the

corresponding estimates of the transmission rates for large times

t (i.e., t.50) are poor. The changes in the recovery and

transmission rates show some interesting temporal patterns. When

t is small (e.g., t,10), the estimated rates are closely associated with

their initial guess and therefore the deviations of both the BME-

SIR and exKF rate estimates are large. The improvement of rate

estimation is shown over time. The transmission rate estimation

accuracy obtained by both methods is low when t.40. This is due

to the low portion of susceptibles after time t = 40 (i.e., the

percentage of susceptible population after t.40 is less than 3%),

which yields transmission rate estimates insensitive to observations.

However, even in the case of low infected population fractions,

both the BME-SIR and exKF methods produce accurate recovery

rate estimates. Clearly, the SIR model is more sensitive to changes

in the recovery rate rather than the transmission rate (Figs. 15–16).

As a result, real-time data assimilation should lead to better

estimates of real-time transmission rates.
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