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ABSTRACT 
Stochastic analysis and prediction is an important component of 
space-time data processing for a broad spectrum of Geographic 
Information Systems scientists and end users.  For this task, a 
variety of numerical tools are available that are based on 
established statistical techniques.  We present an original software 
tool that implements stochastic data analysis and prediction based 
on the Bayesian Maximum Entropy methodology, which has 
attractive advanced analytical features and has been known to 
address shortcomings of common mainstream techniques.  The 
proposed tool contains a library of Bayesian Maximum Entropy 
analytical functions, and is available in the form of a plugin for 
the Quantum GIS open source Geographic Information System 
software. 

Categories and Subject Descriptors 
D.2.2 [Software and Engineering]: Design Tools and 
Techniques – modules and interfaces, software libraries; G.3 
[Probability and Statistics]: – stochastic processes 

General Terms 
Algorithms, Design, Theory 

Keywords 
Spatiotemporal analysis, stochastic processes, prediction, BME, 
modeling. 

1. INTRODUCTION 
The study of attributes in space-time can involve a variety of 
analytical computations.  Such computations are integral 
components within Geographic Information Systems (GIS) 
modeling tools.  In this scope, statistical techniques are used for 
such tasks as attribute prediction or simulation, tracking an 
attribute behavior, explaining geospatial phenomena, providing 
expert assessment ([1]-[3]).  In particular, statistical techniques 
are employed to deal effectively with the element of uncertainty 
that exists inherently in many natural processes and/or might be 
introduced in the analysis by means of inaccurate measurements, 
lack of our exact knowledge about the attribute behavior, human 
error, etc. (e.g., [4]). 

For geostatistical tasks such as attribute prediction, interpolation 
and simulation with spatial or space-time data, a number of 
software tools exist that provide solutions based on well-known 
stochastic methodologies in the literature; see, e.g., [5]-[9].  Such 
solutions can be found both in the open source community 
(GSLIB [10], modules in the R language, e.g., [11]), as well as in 
commercial packages ([12]-[13]). 

Yet, the foundations of many common stochastic methodologies 
are built on restrictive assumptions and limitations.  For example, 
linear models are used to describe phenomena that are nonlinear 
in nature; data are often assumed to follow Gaussian distributions 
due to internal requirements of linear interpolators; techniques are 
unable to account for uncertainty in interval or probabilistic data, 
and such measurements are either skipped or being used by 
reducing their informational content to single values. 
As an alternative to classical geostatistical approaches that are 
burdened by the aforementioned shortcomings, Knowledge 
Synthesis (KS) was introduced as a cognitive framework to 
address these issues.  Within this framework, the goal is to 
embrace all relevant information about an attribute in a rigorous, 
epistemic manner to improve the analysis.  A well-tested KS 
methodology is the Bayesian Maximum Entropy (BME) 
technique; see, e.g., [14].  Numerical implementations of the BME 
theory have been previously available by means of advanced 
functions for space-time analysis and temporal GIS ([15]).  To-
date, two different software tools have been developed on the 
basis of this library of functions; namely, the Spatiotemporal 
Epistemic Knowledge Synthesis Graphical User Interface (SEKS-
GUI; [16]) that is a Matlab toolbox, and the BME Graphical User 
Interface (BMEGUI) that is a Python-based application.  

In this paper, we provide a brief overview of the KS principles 
and the BME methodology.  We then propose a new tool oriented 
towards seamless GIS integration that offers key features of the 
BME analysis.  We introduce the STAR-BME module (an 
acronym for Space-Time Analysis Rendering with BME) that is 
currently available as a plugin for the Quantum GIS (QGIS) open 
source software.  We illustrate its features, functionality and ease 
of use by presenting the main steps through the different stages of 
spatiotemporal analysis in a simple modeling example. 

2. KNOWLEDGE SYNTHESIS  
2.1 A Framework for Space-Time Analysis 
Predictive space-time analysis typically involves combining two 
discrete categories of information in attribute studies.  First is the 
epistemic component that reflects our level of general knowledge 
regarding main attribute characteristics and scientific facts that 
apply in the analysis context.  Second is the ontologic component 
that refers to the attribute data measurements at selected instances 
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in space and time.  Mainstream spatiotemporal analysis 
techniques are conceptually limited with respect to the generality 
of resources they can employ and by their modeling assumptions. 

The KS framework reviews these reasoning basics to extend the 
analysis characteristics, enable assimilation of multiple different 
knowledge sources, and thus achieve higher informativeness in 
the analysis input and output; see [17]-[18] for extended 
discussions and illustrative examples.  To succeed in this goal, 
methodologies that implement KS are founded on a new 
perspective that extends common perception of data as single 
values.  Under this viewpoint, soft data—for example, uncertain 
measurements in the form of intervals or probabilistic 
distributions—can be scientifically integrated in the stochastic 
analysis to retain the informational content of their uncertainty.  
Moreover, epistemic information assumes a role that is as 
important as the role of observed data; this is accomplished with 
the inclusion of precious knowledge about background 
processes—for example, applicable laws, models or principles—
that contribute to the attribute behavior in space-time, and which 
would be otherwise ignored. 

The following subsection expands on the specific KS framework 
BME methodology that is used by STAR-BME. 

2.2 Bayesian Maximum Entropy 
The BME methodology describes an operational Bayesian 
technique for prediction of unknown attribute values at selected 
space-time locations on a grid or individually specified.  BME 
integrates different types of information in consecutive stages.  
The prior stage considers general knowledge bases (G-KB) that 
are derived from epistemic principles, such as physical laws and 
conceptual models.  In the second (posterior) stage, the prior 
information is updated with information from the attribute data 
that BME terms as specificatory knowledge (S-KB).  Blending the 
two types of knowledge bases yields the total given information K 
about the stochastic process. 
Within a stochastic representation, an attribute is considered as a 
spatiotemporal random field Xp=Xs,t (S/TRF; [19]) at each location 
p=(s,t) in the unified spatial and temporal continuum with spatial 
coordinates s=(s1,s2) and temporal coordinate t.  Specification of 
the Xp values at all points of the continuum determines a 
realization of the S/TRF. Randomness manifests itself as an 
ensemble of possible realizations of the Xp distribution.  For a 
given vector pk of prediction locations where attribute values are 
sought, BME starts with the given information K to compute the 
probability distribution fK of the attribute values at each point pk.  
Given the fK at pk, the prediction PDF yields a variety of attribute 
characteristics at the prediction locations, such as the attribute 
mean, its most probable value (mode), etc.  See [14] for a detailed 
theoretical presentation of BME.  Additional perspectives on KS 
and BME can be found at www.spacetimeworks.com. 

The unique BME features have been illustrated in numerous 
studies across disciplines; see, e.g., [20]-[22].  In the following, 
we present the STAR-BME software module that brings to GIS 
the advanced features of spatiotemporal BME prediction as a 
dedicated QGIS plugin component. 

3. INTRODUCING STAR-BME  
In the past several years, GIS applications have been very 
successful in a variety of research fields.  At the same time, a 
rapidly growing need has been experienced to implement 
temporal functionality in conventional GIS environments.  
Integration of spatiotemporal analysis tools and existing GIS 
software can lead to easier interaction between these tools and 

GIS built-in functions; in turn, this can facilitate GIS users in 
accessing and analyzing space-time data. 

Based on this premise, the STAR-BME toolbox has been designed 
and developed so that it seamlessly integrates advanced functions 
of space-time analysis and modeling under conventional GIS 
environments.  The result is the STAR-BME toolbox, which 
provides user-friendly access with graphical user interface for 
space-time analysis, and powerful, advanced modeling under the 
KS framework and BME in the QGIS environment.  At the 
present stage, the major advantages of the STAR-BME toolbox 
for QGIS environment are two-fold as follows:  
1) Implementation of functionalities for space-time data under 

the GIS environment 
2) Development of KS-based prediction method for spatial and 

spatiotemporal data 
The major features of the STAR-BME toolbox can be 
summarized as follows: 
1) Practical display of space-time data in the GIS environment 
2) Integration of multi-sourced space-time data in different 

formats 
3) Display and incorporation of space-time data of multi-

sourced uncertainties in probabilistic forms 
4) Analysis of space-time dependence, by using empirical and 

mathematical spatiotemporal models 
5) Prediction and mapping in space and time 
6) Data export and display in multiple formats, including vector, 

raster and ASCII files 

The STAR-BME module is free software that is publicly available 
at http://homepage.ntu.edu.tw/~hlyu/software/STAR. 

4. STAR-BME ANALYSIS: A CASE STUDY 
OF PM10 IN TAIPEI 
The STAR-BME toolbox is applied to spatiotemporal mapping of 
monthly particulate matter (PM10) concentration across the 
Taipei area in Taiwan during a 48-month period in 2004-2007 
[20].  The PM10 data are observed from 26 stations across the 
area.  For the purposes of software demonstration, the original 
dataset is divided into two parts, i.e. hard data and soft data.  In 
particular, the hard data are the space-time observations directly 
obtained from the monitoring stations and assumed to be exact 
values; the soft data is data with uncertainty.  We assume 
uncertainty to stem from known measuring issues at 
corresponding monitoring stations.  The uncertainty is expressed 
by considering data from those stations as interval data within the 
ranges [0.9ms,t;1.1ms,t], where ms,t is the original observed 

 
Figure 1. Map of PM10 hard and soft data in Taipei. 



concentration levels.  STAR-BME imports efficiently hard and 
soft data into QGIS for BME analysis.  Figure 1 shows the data at 
instance t=1, where the layer of hard data is represented by circles, 
and the layer of soft data is shown as triangles.  These symbols are 
filled with color that shows the value of the hard data or the mean 
of the soft data, according to the generated colorbar on the right 
side of the display window.  The user can examine the data spatial 
distribution and values at any instance by sliding as desired the 
time bar at the bottom of the display window. 

Additional perspectives of the space-time data are also available 
by means of the “time” and “histogram” views, in which the 
STAR-BME toolbox produces data views as time series and data 
histogram, respectively, at a certain spatial location.  One such 
example is displayed in Figure 2.  

One aspect of the exploratory analysis in spatiotemporal modeling 
is investigating the data nonstationarity.  This task is performed 
by means of spatiotemporal trend modeling.  Estimation of a 
space-time trend removes large-scale variations from the original 
data, and yields stationary residuals for the purpose of prediction.  
STAR-BME provides the kernel smoothing and generalized 

additive model options to estimate large-scale variation across 
space and time in the study domain.  As an example of this 
process, Figure 3 shows the time series of original data values and 
the estimated trend at a certain monitoring station. 

At a consecutive step, one needs to characterize the stochastic 
relationship between the space-time attributes.  For this task, a 
suitable spatiotemporal dependence function should be employed, 
commonly known as a covariance (or a semivariance) model.  
STAR-BME computes the empirical space-time covariance at 
user-specified lags in both spatial and time domains.  Then, a 
suitable model is fitted to the empirical function by using either 
manual or automatic algorithms.  Figure 4 shows the parameters 
of the spatiotemporal covariance model that was fitted to the 
empirical one from the PM10 observations.  The model is selected 
on the basis of the statistical Akaike Information Criterion (AIC).  
STAR-BME offers a variety of views for the selected space-time 
covariance model.  For example, Figure 4 shows the marginal 
covariances at temporal lag τ=0 and spatial lag σ=0. 

Eventually, STAR-BME uses the BME methodology to 
incorporate all hard and soft data for spatiotemporal prediction.  
Prediction can be made at user-specified points, grid or shapefiles.  
STAR-BME enables users to display the prediction results in an 
array of different spatial and temporal mapping perspectives. 

 
Figure 2. Time series and histogram views of data across 

time that were collected at a specific spatial location. 

 
Figure 3. PM10 data time series and estimated trend at a 

selected monitoring location. 

 
Figure 4. Space-Time covariance analysis in STAR-BME. 

 
Figure 5. BME PM10 prediction means across the Taipei 

study area at a selected temporal instance (t=12).  The 
prediction map overlays a Web Map Service area map. 



For example, Figure 5 shows predicted PM10 values on a 
specified grid around Taipei at instance t=12.  Also, Figure 6 
shows a time series of the predicted values and their associated 
prediction error at a selected spatial location and at prediction 
instances from t=8 to t=15.  Prediction results can be reused by 
specifying to store them in vector, raster, or ASCII text files. 
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Figure 6. Time series of BME PM10 prediction means and 

errors at a selected spatial location for t in [8,15]. 


