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Abstract 
 
Space-time data analysis and assimilation techniques in atmospheric sciences typically consider 
input from monitoring measurements.  The input is often processed in a manner that 
acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) 
under conditions of uncertainty, leads to the derivation of secondary information that serves 
study-oriented goals, and provides input to space-time prediction techniques.  We present a novel 
approach that blends a rigorous space-time prediction model (Bayesian Maximum Entropy, 
BME) with a cognitively informed visualization of high-dimensional data (spatialization).  The 
combined BME and spatialization approach (BME-S) is used to study monthly-averaged NO2 and 
mean annual SO4 measurements in California over the 15-year period 1988-2002.  Using the 
original scattered measurements of these two pollutants BME generates spatiotemporal 
predictions on a regular grid across the state.  Subsequently, the prediction network undergoes the 
spatialization transformation into a lower-dimensional geometric representation, aimed at 
revealing patterns and relationships that exist within the input data.  The proposed BME-S 
provides a powerful spatiotemporal framework to study a variety of air pollution data sources.   
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1. Introduction 
 
Nitrogen dioxide (NO2) and sulfate (SO4) are two air pollutants that typically occur as by-

products of fossil fuel and biomass combustion.  SO4 mostly has the effect of increasing 

the air acidity that can lead to acid rain, whereas the role of NO2 is more complicated as it 

contributes both to tropospheric ozone pollution and may have adverse effects on the 

cardio-respiratory system (1, 2).  A variety of statistical techniques can be used to study 

separately the spatial variation and temporal evolution of air pollutants and the associated 

risk assessment (e.g., 3-7).  The present work demonstrates a novel approach to study 

important characteristics of the SO4 and NO2 distributions in a composite space-time 

continuum.  Such characteristics can be as evident and measurable as concentration 

values, or can be of a more subtle nature such as behavioral similarities across time for 

individual spatial locations.   

More specifically, the proposed approach is the synthesis of a rigorous space-time 

stochastic analysis (BME, Bayesian Maximum Entropy, (8)) with a set of computational 

transformations for visualizing high-dimensional data (spatialization, (9)).  BME is a 

well-established spatiotemporal statistics and geostatistics methodology (8) for 

spatiotemporal prediction of environmental attributes.  With its advanced features (e.g., 

lack of restrictive assumptions, assimilating input from monitor measurements, a variety 

of certain and uncertain observations, and physical laws), BME has been employed in 

many atmospheric studies and has provided accurate prediction of air pollutants across 

space and time (e.g., 10-15).  Meanwhile, spatialization is an approach to making 

complex high-dimensional data accessible to the human perceptual and cognitive system 

through computational and visual means (9).  This is grounded in the use of spatial 

metaphors for non-spatial data and typically involves processes of dimensionality 

reduction and spatial layout, followed by symbolization.  We are employing the self-

organizing map (SOM) method for clustering and dimensionality reduction (16, 17).  The 

synthetic BME-spatialization approach (BME-S) generates an array of visual output that 

offers insight, perspective, and facilitates the understanding of underlying mechanisms 

that govern the spatiotemporal distribution of the NO2 and SO4 pollutants.  

In general, the monitors that generate pollutant measurements are characterized 

by sparseness and heterogeneity across space-time under conditions of uncertainty (18).  



BME analysis provides a stochastic description of the combined uncertainty-

heterogeneity that characterizes these pollutants and generates pollutant distributions in 

space-time (predicted distribution mean, median, etc.) and the associated prediction 

uncertainty (10-14).  The BME analysis typically produces results on a composite space-

time grid (involving multiple locations in space and numerous temporal instances).  As 

such, for mapping purposes, the BME output could be considered as a higher-

dimensional manifold, in the sense of (16).   

Spatialization, with its series of conceptual, computational, and visual 

transformations, can lead to such high-dimensional data being seen in new ways (9).  In 

this study, the gridded BME output enables the spatialization technology to search for 

informative space-time patterns of NO2 and SO4 concentrations.  The particular 

spatialization approach introduced here involves reinterpreting the same data set in 

multiple ways, based on transformation of BME-generated values into different space-

time-attribute configurations.  That enables the combined BME-S approach to offer a 

valuable multi-perspective framework in the study of air pollutants in a composite space-

time context.   

To facilitate illustration of the BME-S approach, we selected on purpose the two 

pollutants NO2 and SO4 because their spatiotemporal distributions typically feature some 

distinctively different characteristics.  Specifically, NO2, a secondary pollution formed 

shortly after emission, is considered to be linked to traffic exhaust and is known to vary 

over small areas.  The choice of SO4 was motivated by the facts that sulfate is largely a 

regional secondary pollutant and it is the most spatially homogeneous component of 

ambient particles (19).  To accent more on these differences, the geostatistical study of 

these two pollutants focuses on different time scales; namely, NO2 is studied on a 

monthly temporal scale, whereas SO4 concentration is predicted on the basis of annual-

averaged values.  In essence, the spatialization processing is then tested to investigate for 

space, time and attribute patterns between these two pollutants under these specific 

conditions.  In the following, we exhibit that the proposed BME-S approach can be used 

to reveal connections between attributes that might be otherwise not apparent, as in the 

present study where we employ relatively unrelated attributes.  In that sense, the BME-S 

approach is illustrated here in terms of the NO2 and SO4 datasets as a proof-of-concept.  



The usefulness of BME-S extends beyond the scope of the current study; BME-S can be 

applied in a variety of space-time atmospheric systems involving large geographic areas, 

long time periods, and even multiple attributes captured by diverse monitors.   

 

2. Nitrogen Dioxide and Sulfate Data 
 
The study datasets were provided by the California Air Resources Board (CARB).  The 

datasets consist of monthly-averaged NO2 measurements from a total of 137 monitoring 

locations, and annual averages of SO4 measurements from 166 monitoring locations over 

the 15-year period between 1988 and 2002.  SO4 was measured as a mass constituent of 

PM10 (particulate matter of 10 microns or less in aerodynamic diameter, although 

previous studies indicate that much of the SO4 will have particle sizes below 2.5 microns 

in aerodynamic diameter; see, e.g., (20)).  Figure 1 shows all the measurement sites for 

each pollutant during the study period.  The geographic map units are meters and the data 

geographic coordinate system (GCS) is the 1983 North American GCS.  About 70-100 

measurements were available at every time instance for purposes of the BME analysis. 

The prediction stage considers a moderately dense spatial rectangular grid of 

21 24 nodes that encloses the state of California.  The subsequent stage of spatialization 

analysis considers all the grid nodes within the state borders.  The temporal grid 

resolution in NO2 prediction is one month; it starts in January 1988 (month 1) and 

finishes in December 2002 (month 180).  The corresponding temporal resolution for 

the SO4 analysis is one year, where the grid starts in 1988 (year 1) and finishes in 

2002 (year 15). 

The analysis leads to maps of the pollutant concentration predictions in California 

that reveal the state-wide behavior of the pollutants.  Some more information about the 

study data sets is given in section S1, Supporting Information.    

 

3. Methodologies 
 
3.1. Conceptual and theoretical foundation of BME Spatiotemporal Prediction  
 
The study of the pollutants concentrations in space and time involves natural uncertainty, 

and for this reason we describe each pollutant in a stochastic manner.  The spatiotemporal 



random field theory (S/TRF, 21) is a powerful tool to study attributes that vary across 

space-time under conditions of uncertainty. 

In the synthetic BME-S approach, we consider the concentrations of each one of the 

pollutants as a S/TRF.  The distribution of pollutant concentrations across space-time is 

represented by the S/TRF  at each space-time point  in the continuum of 

spatial coordinates  and time .  The BME technique for stochastic S/TRF 

analysis is applied to each one of the NO2 and SO4 datasets separately to predict the 

pollutant distributions across the specified grids during the study period. 

The SEKS-GUI software library (22) is used to implement the space-time BME 

analysis.  SEKS-GUI is an acronym for “Spatiotemporal Epistemic Knowledge 

Synthesis-Graphical User Interface”.  The software processes the fundamental BME 

equations of spatiotemporal dependence analysis and mapping that are presented in the 

Supporting Information section S2.  These equations represent in a concise and coherent 

way the various elements of real world space-time analysis and prediction, including 

knowledge bases (KB), space-time geometry, and the probabilistic description of the 

phenomenon.  The BME equations are mathematically very general, in the sense that they 

make no restrictive assumptions about the underlying probability distributions (non-

Gaussian laws are automatically incorporated) and the shape of the space-time predictor 

(non-linear predictors are allowed).  Hence, the BME framework is free of the restrictive 

assumptions commonly made in classical geostatistics and statistical regression 

modeling, and can thus operate on a broader scope of KB types and uncertain data (23). 

The fundamental BME equations integrate general KB (G-KB) and site-specific 

KB (or S-KB) and provide a complete stochastic assessment of each pollutant at a set of 

predefined space-time nodes.  The G-KB may include physical laws, theoretical models 

of space-time dependence (covariance, semivariogram, etc.), empirical relations, and 

logic-based assertions that are related to the pollutant .  The site-specific information 

S-KB usually consists of observed hard and soft (probabilistic, intervals, etc.) data.  In the 

present study, the G-KB consists of theoretical covariance models.  The S-KB includes 

pollutant data.  All observations have been reported as hard values, i.e., the study 

measurements do not include significant observation uncertainty.  Hence, in the absence 



of soft data the BME methodology mathematically reduces to BME kriging (8, Chapter 

12). 

SEKS-GUI represents the prediction grid by the space-time vectors , in which 

case the fundamental BME equations compute the complete prediction pdf  at each 

.  Given , different  predictions can be derived at each spatiotemporal node  

of the mapping grid depending on the objectives of the study.  In view of the G- and the 

S-KB used in the present study, the  mean (or BMEmean) is chosen as the pollutant 

predictor.   

BME thus generates informative pollutant maps that completely cover the spatial 

and temporal continua within their respective extents.  This enables asking new types of 

questions about complex spatiotemporal phenomena, such as the following:  Are there 

pronounced regional patterns in how pollution at various cells has changed over time?  

Have some cells begun to diverge from each other, i.e., they used to have similar annual 

patterns, but behaved quite differently in later years?  Similarly, has the behavior of 

particular pollutants – relative to other pollutants – changed, i.e., did they used to rise/fall 

in unison but not any more?  Those are precisely the types of questions that the 

spatialization component of this project aims to address.  

 
3.2. Conceptualizing spatialization  
 
The use of spatialization in processing BME outputs is fundamentally rooted in a 

conceptualization of multi-temporal pollution measurements and interpolations as 

existing in various high-dimensional spaces.  One can postulate different such spaces 

even for a single dataset, depending on the specific research questions one wants to 

pursue.  Transformations between different spaces then become the basis for multi-

perspective visualizations. 

More specifically, in this study the BME-generated pollutant predictions in a 

composite space-time domain are interpreted within a tri-space that is formed by 

geographic space, time, and attributes (24).  When dealing with cells at S geographic 

locations having been given values for A attributes at T different times, we are faced with 

a single set of S A T observations (an SAT dataset).  One can systematically explore 

this tri-space of SAT values by constructing a series of matrices in which rows and 



column are constructed from combinations of tri-space elements.  Figure S2 in 

Supporting Information gives a schematic representation of this concept. 

For example, an individual row is identified with a composite identifier pointing 

to a particular geographic location  and a particular time slice , whereas a column 

corresponds to particular attribute .  Hence, we would be looking at S T space-time 

loci, existing in an A-dimensional space (the present study has a two-dimensional 

attribute space for pollutants NO2 and SO4).  The questions one could then ask would 

deal with relationships among space-time loci.  In addition, considering that T is part of 

the composite row identifier and that there tends to be known topology among different 

 –namely a particular, “natural” sequence– we can conceptualize an individual cell  

as following a trajectory through the A-dimensional space.  This would allow asking 

questions about multi-temporal similarity of multiple , including invoking notions of 

parallelism, divergence, and convergence, as demonstrated in (25) with multi-temporal 

Census data for Texas counties.   

Alternatively, the same set of S A T measurements could be transformed into a 

different matrix in which rows correspond to combinations of  and , whereas 

columns correspond to different .  Altogether, six different matrices could be derived 

from one SAT source data set.  Each of these six matrices offers a different perspective on 

the source pollutant data.  In this case, different questions can be asked about the 

similarities of location-attribute composites. One could ask, e.g., whether NO2 

concentrations at one location have over time behaved similar to SO4 concentrations at 

another location.  

 
3.3. Dimensionality reduction 
 
The dimensionality of row vectors is typically too large to be directly plotted.  Some type 

of dimensionality reduction is then necessary for a visual depiction.  For matrix-type 

data, the more popular options include multidimensional scaling (MDS), principal 

components analysis (PCA), and self-organizing maps (SOM).  Of these, the SOM 

method is particularly suited for dealing with very voluminous and high-dimensional 

datasets (16).  Applications of the SOM method abound, including for geographically 

referenced environmental data (17).  There are two main products when using SOM: (i) a 



low-dimensional model of the high-dimensional input space, the SOM itself; and (ii) a 

low-dimensional representation of high-dimensional vectors after they are mapped onto 

the trained SOM (17, pp. 1-20).  The former is often useful in explaining patterns 

observed in the latter, once both are given visual form, as demonstrated in section 4.2. 

 
3.4. Visualization 
 
Once high-dimensional structures and relationships are expressed in a low-dimensional 

geometric form, they can theoretically be made visual.  However, effective visualization 

depends on being able to further transform geometric structures in imaginative ways.  

Geographic information systems (GIS) are already uniquely suited to this goal, regardless 

whether the low-dimensional space in question is geographically referenced. 

 
4. Implementation and results 
 
4.1. BME prediction 
 
First, the NO2 and SO4 data are processed to filter out potential surface (mean) trends.  

Mean trends represent larger scale variations that can obscure the underlying space-time 

dependence structure in the study scale.  The SEKS-GUI software removes estimates of 

mean trends (see section S3, Supporting Information) and restores the trend component 

after the prediction computations. 

For each one of the NO2 and SO4 pollutants, the detrended residuals are used to 

compute the empirical correlation among the pollutant values in space-time.  This is used 

to fit a theoretical covariance model, which is key input to the prediction computations.  

Section S3 in Supporting Information contains the technical details regarding the 

correlation analysis in our study. 

Figure 2 shows the predicted BMEmean values for NO2 and SO4 obtained by 

SEKS-GUI across the California grid for a few selected time instances.  The examples 

shown in Figure 2 are characteristic of the pollutants’ behavior, in that throughout the 

study period the highest pollutant concentrations are consistently found in the Los 

Angeles area.  Specifically, there is an evident seasonality in the predicted NO2 monthly 

averages across the state.  These averages tend to peak during the winter months; an 

absolute maximum monthly mean of about 76 ppb over the 15-year period study was 



predicted at 95 (November 1995).  Overall, the BME analysis showed the annual 

mean of the highest predicted monthly values in California to range between about 33 to 

49 ppb; these values are above the 30 ppb average annual limit set by the state, but they 

all fall below the corresponding current federal limit of 53 ppb.  The NO2 standard 

prediction error has been consistently estimated to be below 9.2 ppb at any location and 

exhibits typical values around 5.5 ppb.  The SO4 annual concentrations display no 

noticeable trend or significant fluctuations during those years.  The highest annual 

average is predicted at nearly 7 µg/m3 at 4 (1991) and the maximum standard error 

value in the predictions was 0.82 µg/m3.  

Based on the original temporal grid specifications, there is a series of predictions at 

150 monthly time instants for NO2 and 15 annual instants for SO4 between 1988 and 

2002.  These are the BME analysis results of the two pollutants that are forwarded to the 

spatialization segment of the BME-S approach. 

 
4.2. Spatialization 
 
This paper discusses two visualizations derived from NO2 and/or SO4 BME predictions, 

with the goal of illustrating the types of novel investigations that can be developed using 

a spatialization methodology.  Considering the geostatistical generation of air pollution 

predictions in our selected spatiotemporal lattice of cells, we explore how spatialization 

might be used to holistically explore this data set.  Only cells with predictions for both 

variables and all time periods (all 180 months for NO2 and all 15 years for SO4) were 

kept, and this explains the usefulness of the BME methodology in the proposed BME-S 

approach.  Spatial filtering further eliminated all cells whose Voronoi region did not 

intersect California.  The resulting set of geographic locations S consists of 204 cells. 

The first experiment reported here focuses on just the NO2 variable.  Thus, though 

this is not a multi-attribute data set, with 204 cells and 180 time slices it still involves 

36,720 NO2 values.  The first experiment arranges the monthly data in sequence to form a 

matrix of 204 rows representing geographic loci (S) and 180 columns representing 

temporal loci (A).  One is thus able to ask questions about the temporal similarity of NO2 

observations across the 204 cells.  



Before proceeding with dimensionality reduction (from 180 to 2 dimensions), NO2 

values were normalized in three alternative ways, each meant to illuminate different 

relationships among the cells.  In each case, normalization is based on scaling values to a 

0-1 range, proportional to the minimum and maximum NO2 values. 

(a) Global normalization 

All 36,720 NO2 values are here normalized to a 0-1 range in a single step, based 

on the smallest and largest monthly mean ever observed for any cell and any time 

period.  Similarities among cells observed in the visualization (as expressed 

through similar colors) will thus be largely reflective of differences in the 

magnitude of NO2 concentrations.  

(b) Time normalization 

Normalization occurs here in isolation for each time slice, based on minimum and 

maximum values for the respective slice.  Assuming that the geographic 

distribution of relative NO2 concentrations at different times is relatively constant 

–in that the relative ranking of cells does not change despite changes in absolute 

magnitude– one would expect patterns of cell similarity to be close to what is 

produced by global normalization. 

(c) Cell normalization 

Another form of normalization occurs within cells, i.e. within rows of the input 

matrix.  With the smallest and largest value ever observed for a particular cell 

driving the normalization, this leads to more direct comparison of temporal NO2 

signatures.  For example, it allows temporal alignment of local maxima and 

minima of different cells to be recognized despite differences in magnitude.  One 

would expect that broad regional patterns effecting NO2 concentration might 

come to the fore in this approach, since regional causes may drive concentrations 

up or down in similar patterns, irrespective of the magnitude of pollutant 

concentrations. 

 
Three different input files were prepared according to the above three 

normalization approaches.  From each one of these files, a SOM consisting of 16 neurons 

(4x4) was derived and the best-matching neuron was determined for each of the 204 



cells.  While this choice of granularity may seem arbitrary, it was informed by the desire 

to project the resulting grouping of the 204 cells from neuron space into geographic 

space.  At 16 cells one can already represent significant variation.  One advantage of the 

SOM method is that topological relationships among neuron-based clusters are explicitly 

represented, which can be considered when making color choices.  In the representation 

of the SOM itself (i.e., the 4x4 neuron lattice) in Figure 3, complementary colors were 

chosen for opposite ends (i.e., red-green and orange-blue), and other neurons’ colors 

correspond to transitional mixtures. 

In the geographic map, each neuron receives the color of its best-matching 

neuron.  In addition, the high-dimensional distance of the geographic cell from the 

neuron centroid is expressed as transparency, allowing visualization of within-cluster 

variation.  For example, within the “red” cluster, fully saturated red corresponds to cells 

that are near the cluster centroid. 

Albeit the three solutions shown in Figure 3 are similar, they are completely 

independent with no coordination of color schemes.  For example, cells with generally 

high values of NO2 concentration are found in the “red” cluster for the globally 

normalized solution in Figure 3a, but in the “green” cluster for the time normalized 

solution in Figure 3b.  The main purpose of these visualizations is to observe multi-

temporal regionalization of NO2 concentrations across geographic space. 

To explain the observed patterns, one would have to examine the content of 

neurons vectors.  With every neuron being associated with a 180-dimensional vector, that 

would be a difficult task to achieve.  To illustrate the principle, bar charts have been 

selectively generated and shown in Figure 3 from each neuron’s trained value for the 

January component of all 15 years, running from 1988 to 2002 (left to right).  An 

individual bar expresses how high the NO2 values were for that particular January, 

according to the specific normalization approach.  Again, one would have to either 

visually or computationally examine neuron values to understand precisely how the 180-

dimensional space is structured by each 16-neuron SOM. 

As expected, the globally normalized and time normalized SOM show very 

similar patterns.  In the case of the extreme North Coast and the Central Coast and 

Coastal Range, one can observe similarity despite geographic separation.  These areas 



consistently exhibit the lowest NO2 concentrations.  In some cases, one can clearly 

observe transitions, such as when one moves from a corridor around Interstate 10 (I-10) 

northward.  In the globally normalized solution, one moves from the red cluster gradually 

through the pink, then purple, then blue clusters.  This corresponds to a predicted gradual 

decline of NO2 values.  However, notice also a relatively transitionless cross from the 

blue to the yellow cluster.  This corresponds to a move from the orange to the blue/light-

blue regions in the time-normalized solution.  It is apparent that the Eastern Sierra 

Nevada and Owens Valley are quite different from the desert region north of the I-10 

highway.  Notice also the linear arrangement of yellowish-green cluster cells (Figure 3a) 

and purple cluster cells (Figure 3b) in the Central Valley along Interstate 5 (I-5) and how 

it is in both solutions separated from the neighboring Coastal Range by a full cluster.  Los 

Angeles, with its known high NO2 concentrations is placed within a contiguous cluster 

running from the coast along I-10 to the Arizona border.  However, it is extreme enough 

to be located relatively far from the neuron’s center, thus appearing less saturated than 

the rest of this cluster. 

The cell-normalized solution is quite different (Figure 3c).  As mentioned before, its 

goal is to reduce the effects of NO2 magnitude to more clearly focus on similarities in 

temporal NO2 regimes.  In the bar charts there tends to be a wider range of bar lengths, 

indicating that January NO2 concentrations varied significantly during the 1988-2002 

time span.  One can now observe that the generally low-NO2 areas in the Coastal Range 

did show a very different temporal regime than its low-NO2 counterparts at the North 

Coast.  In fact, these two areas now appear in opposite clusters, with the red clusters 

showing the least amount of January NO2 variation, while the North Coast saw a 

dramatic drop of NO2 from its 1989 maximum.  The Central Coast is now grouped with 

the adjacent portions of the Central Valley, indicative of underlying regional factors 

affecting NO2 concentrations, despite the observed differences in NO2 magnitude.  In the 

cell normalized solution, the Mojave Desert region has become separated from the Los 

Angeles basin, due to its large rise of predicted January NO2 concentrations following the 

1997/98 minimum, with values stabilizing at a high level by 2001.  Again, these are 

patterns that would have been obscured in a magnitude-focused analysis. 



In a different analysis, an integration of NO2 and SO4 data was performed, leading 

to the visualization shown in Figure 4.  One major advantage of the geostatistical 

generation of cell-level predictions is that NO2 and SO4 can be integrated despite 

differences in the spatial distribution of monitors.  Spatial integration is thus feasible.  

Temporally, with SO4 available as annual values, NO2 had to be aggregated to the annual 

level.  In this experiment, simple averaging of mean monthly values was used.  One can 

then proceed to construct an SAT data set that actually has multiple attributes.  The 

question pursued at this stage of the study was whether there are differences in the 

temporal regimes of NO2 and SO4.  The 204 cells were conceptualized as existing in a 

15-dimensional space, but with two instances of each cell, one for each attribute (see also 

Figure S2 in Supporting Information).  The input data set thus generated consists of 408 

vectors or rows.  These were normalized to a 0-1 range at the level of the individual 

vector, with the goal of enabling comparison across multiple vectors and attributes, such 

that geographic patterns as well as attribute-level distinctions become apparent.  A SOM 

of 2,500 neurons (50

€ 

×50) was generated, and the 408 cell-attribute vectors were mapped 

onto it (Figure 4).  If NO2 and SO4 concentrations were evolving in lock-step, subject to 

the same forces in the context of a particular cell, then we would expect to see no 

organized patterns in the distribution of NO2 and SO4 across the spatialization.  However, 

a very strong organization can be observed instead, with most of the two pollutants being 

separated into contiguous regions in the SOM.  It is apparent that the dominant pattern for 

NO2 is the rapid decline of predicted annual concentrations after peaking around 1990, 

with a slight increase after a 1997 minimum.  Meanwhile, SO4 showed a similar pattern 

up to the 1997 minimum, but many cells then seem to have experienced a rapid rise in 

SO4 concentrations after that.  Exceptions from these broad patterns include the 

continued decline of SO4 concentrations in the extreme north of the state and the rapid 

rise of predicted NO2 concentrations in the Mojave Desert north of the I-10 highway.  

The SOM also registers graduated temporal regimes, such as on when one crosses the 

imaginary boundary between NO2 and SO4 regions in the center of the SOM.  However, 

the contiguity of these regions even there points to a need to investigate differences in 

NO2 / SO4 regimes further. 



With respect to Figures 3 and 4, this study did not investigate the relationships 

between observed patterns and the original monitor measurements.  The space-filling 

prediction was accepted at face value, though some of the more consistent patterns occur 

relatively far from monitor locations, such as in the extreme north and east of the state. 

Some additional technical details about the SOM implementation and one more 

visualization example are presented in the Supporting Information sections S4 and S5, 

respectively. 

 
5. Discussion 
 
The present study explored a new framework for a multi-perspective analysis and 

visualization of monitor data in space-time.  The BME-S framework was introduced, 

which is based on the methodological contributions of the BME method for geostatistical 

prediction, and spatialization for visualization of high-dimensional data. 

The BME component takes over the initial part of the analysis, where 

observations from monitors and a variety of other general and case-specific information 

sources can be gathered together to predict air pollution attributes in space and time by 

using an elaborate epistemic methodology. Spatialization depends on this output to 

perform its more introspective role, where the multiple dimensions of different attributes, 

locations and time instants are transformed in a variety of possible ways.  These features 

offer additional paths to view and interpret the observed data and enhance the analysis of 

the attributes in a space-time context. 

 Our work exhibits for the first time this fruitful linking between the rigorous 

spatiotemporal prediction features of BME and the powerful dimensional reduction and 

visualization methodology of spatialization.  The joint approach enables investigating and 

exploiting the characteristics of one or more sampled attributes in both space and time.  

Two pollutants (NO2 and SO4) were examined in this context, and a series of such 

investigations were illustrated with respect to the pollutants’ spatiotemporal distributions 

and individual/joint regional pattern changes in space-time. 

Usually, air pollution studies with more than one attribute consider the additional 

attributes as covariates that are suspected or known to have some effect on the main 

attribute.  For example, a study that involves NO2 might consider O3 as a covariate 



attribute, because these two gases often exhibit association and interaction in their 

spatiotemporal behavior.  In our study, the two pollutants were selected to be relatively 

unrelated and non-interactive attributes, so that the BME-S approach can test potential 

connections between NO2 and SO4 on the basis of their spatiotemporal patterns and 

pattern changes alone.  As illustrated in section 4.2, spatialization in BME-S provides a 

useful platform to explore potential links in similar scenarios.  The findings suggest that 

the proposed approach can be a very attractive and helpful tool to enhance the 

spatiotemporal study of air pollution attributes. 
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Figure 1 

 

 
 

Figure 1: Sites of measurement monitors for the (a) NO2 observations, shown as circles, 

and (b) SO4 observations, shown as diamonds, during 1988-2002. 



 

Figure 2 

 

 
 

Figure 2: BMEmean maps for monthly-averaged NO2 (in ppb units) and annual-averaged 

SO4 (in µg/m3 units) concentrations across California at selected time instances.  The plot 

shows the NO2 predicted distributions means at months (a) 1 (January 1988) and (b) 

7 (July 1988), and the SO4 predicted distributions means at years (c) 1 (1988) 

and (d) 2 (1989). 



 

Figure 3 

 

 
 

Figure 3: Monthly NO2 values for 1988-2002 modeled as 180-dimensional vectors that 

are used to train a 16-neuron SOM. Geographic cells are classified based on matching 

SOM neurons.  Normalization of cell values to a 0-1 range prior to SOM training based 

on (a) values of all cells across all time slices, (b) cell values within time slices, (c) values 

within same cell across all time slices.  Transparency of cells in geographic map is 

dependent their n-dimensional distance from respective class center.  Bar charts show 

annual sequence of January NO2 values according to neuron vectors.  Note that neurons 

actually have values for all 180 time slices, which one would need to investigate in order 

to completely understand how the SOM space is structured.  In these plots, the gray lines 

designate Interstate highways crossing California.  Interstate 5 (I-5) is on the north-south 

axis.  Interstate 10 (I-10) is on the east-west axis in the southern part of the state. 

 



 

 

Figure 4 

 

 
 
Figure 4: Annual NO2 and SO4, each modeled as 15-dimensional vectors, with two 

vectors per geographic cell, separated according to the two attributes.  Input vectors are 

normalized to 0-1 range within the same cell across all 15 annual time slices.  Vectors are 

used to train a 2500-neuron SOM and are then mapped onto it.  Bar charts show sequence 

of annual values between 1988 and 2002.  Notice the relative contiguity of regions 

formed by the two attributes.  Notable exceptions are highlighted in geographic space. 



 
Brief 

 

A methodology is introduced to visualize high-dimensional data, which combines the 

Bayesian Maximum Entropy spatiotemporal prediction technique and the cognitively 

informed approach of Spatialization. 
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S1. Nitrogen Dioxide and Sulfate Data Information from Monitored Measurements 
 
The pollutant predictions complement the collected information from the individual 

monitoring stations.  The information from the monitor measurements provides some 

basic characteristics about the pollutants.  For example, plots of the monthly NO2 

concentrations at individual monitoring stations suggest a clear seasonal behavior of NO2 

with concentration peaks around the winter months.  Also, similar plots of the annual-

averaged SO4 concentration values reveal a smoother behavior that is associated with 

longer-term patterns in the concentration.  You can examine samples of pollutant 

concentration plots at selected individual stations in Figure S1. 

 

S2. The Fundamental Bayesian Maximum Entropy (BME) Equations 
 
The foundation of the BME methodology can be summarized in the following 

fundamental BME equations of spatiotemporal dependence analysis and mapping: 

 

  

€ 

dχ∫ (g − g)eµ T g = 0

dχξS∫ eµ T g − A fK (p) = 0  

& 
' 
( 

) ( 
. (S1) 

Eqs. S1 integrate the available knowledge bases (KB), general KB (G-KB) and site-

specific KB (S-KB) and provide a complete stochastic assessment of each pollutant at a 

set of predefined space-time nodes. 

Specifically in eqs. S1,  is a vector of -functions ( 1, 2, ...) that represents 

the G-KB, and the bar denotes stochastic expectation.  Also,  is a vector of -

coefficients that depends on the space-time coordinates and is associated with  (i.e., the 

 express the relative significance of each -function in the composite solution 

sought),  stands for the vector of possible  values (realization) for the 

spatiotemporal random field , the  is an operator that represents the S-KB,  is a 

normalization parameter, and  is the attribute probability density function (pdf) at each 

spatiotemporal point (the subscript K indicates the prediction pdf and means that  is 

based on the blending of G- and S-KB). 
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The inputs in eqs. S1 are  and , whereas the unknowns are the  and  

across space-time locations 

€ 

p .  Once  is known at 

€ 

p , different  predictions can be 

derived at that location, such as the most probable value of the distribution, the value that 

minimizes the prediction error, etc. 

 

S3. Mean Trend Estimation and Covariance Analysis in the SEKS-GUI Software 
 
The SEKS-GUI BME analysis features a stage where surface mean trends in the observed 

data are estimated and removed, before one continues with the empirical estimation of 

correlation in the data within the study scale.  The software currently performs mean 

trend removal by means of an exponential kernel moving window across the area of 

interest.  The user specifies the spatial and temporal ranges that define the extent of the 

moving window in the composite space-time domain.  For our study, we selected a 

spatial range of 300 kilometers and a range of 5 temporal instances to detrend each one of 

the air pollutants. 

In the detrending process, the kernel acts upon the observed values in the 

spatiotemporal window by smoothing them, and values at locations in-between are then 

interpolated.  The resulting set of smoothed values across the domain (at the observations 

and the grid locations) represents the mean trend estimate.  Since there usually exists no 

definite mean trend, there can be more than one trend estimates.  It is possible to obtain 

different estimates by using different spatial and temporal range parameters that regulate 

the level of smoothing in the moving window.  SEKS-GUI assumes that the resulting 

residuals are uncorrelated. 

The detrended residuals for each one of the pollutants are used to estimate the 

empirical covariance of the corresponding attribute.  A theoretical model is then fitted to 

these estimates to provide the input for the prediction stage.  SEKS-GUI provides a 

variety of theoretical covariance models to fit.  Table S1 lists the forms and coefficients 

that are used for each pollutant model in our study.  In particular, a space-time separable 

covariance model that is exponential in space and exponential in time represents the 

spatiotemporal NO2 correlation.  For SO4, a nested, non-separable spatiotemporal model 

with two structures in each one of the space and time components is selected.  The 

second model structure employs a much longer temporal range compared to the first 
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structure.  This suggests the presence of relatively elaborate mechanisms in the temporal 

evolution of the SO4 concentration.  The difference in the temporal ranges of the SO4 

nested model indicates that these mechanisms act in tandem, but the second structure has 

a much longer lasting influence than the first structure and implies a strong memory 

effect in the behavior of SO4.  Figure S3 illustrates the fitted theoretical space-time 

covariances for the two pollutants.  

  

S4. Construction and Visualization of Self-Organizing Maps (SOM) 
 
The freely available software package SOM_PAK (1) was used for training of the SOM 

neural networks discussed in the paper.  In each case, a hexagonal neuron arrangement 

was used and each neuron’s n-dimensional vector was initialized with random values and 

trained in the standard two-stage manner, with global structures formed in the first 

training stage and local structures formed during the second stage (1). 

In this study, SOMs of different granularity were created in order to illustrate a 

broader range of applications then has been seen in the past.  With a low number of 

neurons relative to the number of input vectors, the SOM acts mainly as a clustering 

mechanism, behaving similar to k-means clustering, but with explicit representation of 

topological relationships between clusters.  In the case of the monthly NO2 values for 

1988-2002, the neural network consists of 16 neurons that are trained using a data set of 

204 geographic cells.  That invites displaying SOM neurons as legend boxes with 

topologically coordinated color design (Figure 3 in the article).  Meanwhile, when there 

are a relatively large number of neurons, then the SOM acts primarily as a spatial layout 

mechanism and a detailed geometric layout of the input vectors can be derived.  That is 

the case for the second SOM, in which 2,500 neurons are trained with 408 input vectors, 

two per geographic cell (Figure 4 in the article).  

After SOM training, the codebook file representing each SOM and generated by 

SOM_PAK is converted to an ESRI Shape file.  All further geometric transformation, 

visualization, and generation of the final figures is performed in ESRI ArcGIS software. 
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S5. An Additional Visualization Derived from NO2 BME Predictions 
 

It is possible one might want to discover finer distinctions among cells, 

specifically enabling the construction of cell trajectories that connect the sequence of 

annual vectors for each cell.  Figure S4 is based on a conceptualization of monthly NO2 

predictions as being part of a 12-month vector for each geographic cell, with each cell 

thus contributing 15 such vectors, that is, one vector for each one of the 15 years used in 

our study.  The resulting 3,060 input vectors were used to train a high-resolution SOM of 

10,000 neurons (100

€ 

×100). 
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Table S1 

 

Pollutant Form (Spatial/Temporal) Sill Spatial range Temporal range 

NO2 Exponential / Exponential 1 100000 m 13 months 

Exponential / Spherical 0.25 90000 m 2.2 years 
SO4 

Exponential / Exponential 0.42 90000 m 300 years 

 

Table S1: Spatiotemporal covariance models used in the geostatistical study. 
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Figure S1 

 

 
 

Figure S1: Time series of monthly-averaged NO2 data in ppb units (upper row) and 

annual-averaged SO4 data in µg/m3 units (lower row) for two selected stations in the 

period 1988-2002.  Station 1 (left column plots) is at coordinates (-143926.4, 167.9) near 

Sacramento, and Station 2 (right column plots) is located at (155134.3, -425284.2) in Los 

Angeles (coordinates are in meters).  The x-axis count starts at month 1 (January 1988) 

for the NO2 data, and year 1 (1988) for the SO4 data. 
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Figure S2 

 

 
 

Figure S2: Three different representations that can be derived from the same space-time-

attribute data set and could be morphed into each other.  Rows are identified as 

combinations of two of the three tri-space components, leaving the remaining component 

to identify the columns.  Transposing would yield three additional representations. 
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Figure S3 

 

 
 

Figure S3: Theoretical spatiotemporal covariances for the (a) NO2 (s-units are m, t-units 

are months), and (b) SO4 (s-units are m, t-units are years) concentration random fields 

that illustrate the functions in Table S1.  The covariance functions are depicted as 

surfaces that spread across the spatial and temporal distance axes. 
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Figure S4 

 

 
 

Figure S4: Monthly predicted NO2 values for 1988-2002 modeled as 12-dimensional 

vectors, with each cell contributing 15 separate vectors.  The 12 component planes are 

shown, with low-high values indicated as a blue-red color range.  These planes clearly 

illustrate the dominant pattern of November through January as corresponding to the 

highest NO2 concentrations, regardless of the absolute values. 


