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ABSTRACT 

 

Covariance functions are powerful statistical tools for the understanding and analysis of 

the variability and uncertainty in natural systems.  The category of non-separable 

spatiotemporal covariances offers advanced options and added flexibility in modeling the 

joint space/time structure of real-world processes that lie in the heart of renewable energy 

modeling.  This work offers a review of covariances generated from physical models 

alongside with visual representations for the illustration of their characteristic features.  

In addition, methods are presented to further develop and expand the collection of such 

functions.  

 

Key words: Spatiotemporal, renewable energy modeling, stochastic processes, random 

fields, geostatistics.    

 

 

1. INTRODUCTION 

 

Renewable energy modeling is one of the vibrant areas for applications of spatiotemporal 

mapping analysis.   Space/time mapping of the incoming solar energy and modeling of 

the solar cells performance; analysis of materials used to build photovoltaics and their 

properties; modeling of the wind fields and identification of the optimal locations for 

wind turbines; estimation of the technical potential of renewable energy.  These are but a 

few instances of space/time-dependent natural processes and measures in the field, which 

can be studied using spatiotemporal prediction techniques.  The estimation of unsampled 
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values is tightly related to the subsequent creation of meaningful, informative maps that 

can be instrumental in pre-testing technical options, projecting research results, analyzing 

the financial feasibility of potential solutions, providing cost-estimation, and eventually 

assisting decision-making.  In principle, the dynamics of such processes on one hand, and 

limitations in our accurate knowledge of the phenomena on the other, raise the issues of 

naturally occurring variability and uncertainty in the studies.  This problem is efficiently 

dealt with by means of the stochastic representation of natural processes, where statistical 

tools are used to quantify and account for these uncertainties at the modeling stage.  A 

powerful framework in the description and study of stochastic processes is offered by the 

Spatiotemporal Random Field (S/TRF) theory (Christakos, 1991; 1992). 

 

The S/TRF theory provides understanding of stochastic processes X(p) , where 

p = (s,t) Rn T , by analyzing their space/time structure, and models their behavior on 

the basis of the available knowledge bases such as physical laws, epistemic principles, 

empirical equations, field measurements, hard or soft data.  The spatiotemporal structure 

of X(p)  examines how points in space and time are correlated, and expresses these 

interdependencies using statistical concepts; e.g., the first order stochastic moments of the 

S/TRF represent underlying systemic trends of the field. The second order moments 

describe fluctuations at a smaller scale, and are also known as covariances. 

 

In particular, covariances express correlations between pairs of points in space/time, 

p = (s,t)  and  p = (  s ,  t ).  Permissible functions can be used to express these correlations.  

In general, a function is a permissible covariance model if and only if its Fourier 

transform is non-negative and its total variation is bounded.  Two main families of 

covariances are the ordinary (or centered) covariances and the generalized ones.  The first 

category is usually associated with spatially homogeneous and temporally stationary 

S/TRF, whereas the second family is used with non-homogeneous/non-stationary S/TRF.  

Covariances are also categorized as separable or non-separable, depending on whether 

the covariance function can be decomposed into purely spatial and temporal components 

or not, respectively. 
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The present work focuses on the physically more realistic non-separable covariance 

functions.  There exist several theoretical models for such covariances in the 

spatiotemporal stochastics and geostatistics, as well as in the classical statistics literature.  

We aim to present ways to create new models of non-separable spatiotemporal 

covariance functions.  We also illustrate some theoretical models of such covariance 

functions that are based on physical models considerations that may be of particular 

interest in the renewable energy modeling field. 

 

2. SPACE TRANSFORMATION OPERATORS 

 

Construction of new covariance models is possible, as long as the candidate functions are 

tested successfully for permissibility.  A fruitful method that creates new covariance 

functions from permissible ones was introduced by Christakos (1984b, 1986).  According 

to the method, space transformation operators (STF) are introduced that permit 

constructing covariance functions in two and three dimensions from one-dimensional 

models.   

 

More specifically, in one instance one STF operator links a covariance model cx,1, in 

R1 T  , with covariance models cx,n , in Rn T  ( n = 2, 3) , by means of the integral 

relation 

 

cx,n (r, ) = En du
0

1
(1 u2)(n 1)/ 2cx,1(ur, ) ,    (1) 

 

where En = 2 (n) (n 1) /2[ ]( ) and  is the gamma function. 

Another STF operator relates the spectral density ˜ c x,1 (in R1 T ) with the spectral 

densities ˜ c x,n  (in  Rn T ; n = 2, 3) by means of the following equations: 

 

˜ c x,2 (k, ) = du
k

(u2 k 2)1/ 2 d
du [u 1 d

du
˜ c x,1(u, )]      (2a) 
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˜ c x,3 (k, ) =  (1/2 ) k 1 d
dk

˜ c x,1(k, )               (2b) 

 

The above methods can be further extended, as the area of STF operators is open for 

reasearch, and consequently similar expressions to the ones in Eqs. (1) and (2) in Rn T  

can be derived from different STF operators. 

 

According to Christakos (1984a), covariance models that are permissible in n  

dimensions are also permissible in n'< n .  In that sense, in some cases it may be more 

convenient mathematically to investigate the permissibility of a covariance model in 

R3 T , regardless of the spatial dimensionality of the domain of interest.  Note, however, 

that a permissible covariance model cx  in R1 T  is not necessarily permissible in Rn T .  

Following the permissibility condition, one needs to derive the spectral density cx,n , and 

then test if it satisfies the requirements of Bochner’s theorem. 

 

3. COVARIANCES GENERATED FROM PHYSICAL MODELS 

 

This section focuses on the presentation of ordinary, non-separable spatiotemporal 

covariances generated by physical models and considerations.  Solutions of partial 

differential equations (PDE) are a common source for such covariance models, as 

demonstrated in the following.   

 

3.1 Models derived from differential equations 

 

I.  The general stochastic PDE   t[X(p)] = Ls [X(p)] is used for the construction of a  

large class of non-separable spatiotemporal covariance models.  In the PDE expression, 

  Ls  is a linear spatial differential operator in Rn .  For example, Christakos and 

Hristopulos (1998) provide the following form of (non-centered) covariances based on 

the preceding PDE: 
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CX (s,t;  s ,  t ) =

c jkj .k= 0 1 j (s) 1k (  s ) 2 j (t) 2k (  t )

A j Ak c ( j,k )(s,  s ) 2 j (t) 2k (  t )
j ,k= 0

A j Ak 1 j (s) 1k (  s ) 2 j (t) 2k (  t )
j ,k= 0

 

 

 
 

 

 
 

 , (3a-c) 

 

where 1 j  and 2 j  represent eigenfunctions (modes) of the PDE.  Each mode has an 

amplitude A j , which is determined from the boundary and initial conditions (B/IC).  In 

Eq. (3a) the coefficients c jk  represent correlations of the mode coefficients, i.e., the 

ensemble average c jk = A j Ak .  In Eq. (3b) the function c ( j,k )  denotes the mode 

correlation 1 j (s) 1k (  s )  and A j  are deterministic mode amplitudes.  In Eq. (3c) the A j  

are random variables to be determined from the B/IC.  Randomness in the covariance 

model of Eq. (3) can be introduced, respectively, by: (i) the B/IC, leading to random 

coefficients A j ; (ii) the differential operator   Ls  leading to random eigenfunctions 1 j ; 

and (iii) by both of the above.  Models (3) may be non-homogeneous / non-stationary due 

to a number of reasons, including the B/IC effects.  

 

For visualization purposes, we followed the example discussed in Christakos and 

Hristopulos (1998) in R1 T .  A diffusion PDE is considered with a parabolic initial 

concentration profile given by f (s) =  c0 4(s L)(1 s L) 1, where c0  is a random variable 

with c0
2

=1 and L  is the domain size.  Then c jk = a j ak , 1 j = cos( j s /L)  and  

2 j = exp( D j 2 2t /L2) , where D is the diffusion coefficient; also, 

a j = 8( j ) 2 [1+ ( 1) j ] (if j > 0), and a j = 2 3 (if j = 0).  By inserting these 

parameters in Eq. (3) and letting L =1 we obtained the covariance Cx (s,t;  s ,  t )  plotted in 

Fig. 1.  Note that Cx (s,t;  s ,  t )  depends on the S/T coordinates of both points p = (s,t)  and 

 p = (  s ,  t ), and not just on the space and time distances between the points.   

In particular, the plots illustrate the covariance values between points in the (s, t)-

domain, and the points (  s = 0,  t ) and (  s ,  t = 0) throughout the length L  for D =0.05.   
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II.  Heine (1955) proposed a parabolic PDE model, based on which the following 

covariance model is built: 

 

cx (r, ) = 0.5[exp( ar) Erfc(a c 1 0.5 r c 1 )

              + exp(ar) Erfc(a c 1
+ 0.5 r c 1 )]

      (4) 

 

The a  and c  are coefficients associated with the parabolic PDE, and Erfc(x)  is the 

complementary error function defined as: 

 

  

Erfc(x) =
(2 / ) dv exp( v 2)

x
,    if  x 0

2 Erfc( x),    if  x < 0

 

 
 

  
 

 

Model (4) represents spatially homogeneous and temporally stationary fields in R1 T .  

Its form suggests that cx 2Erfc(a /c )  as r 0;  and cx
2 as r, 0.  The 

above model is plotted in Fig. 2A for a selected a /c  ratio in R1 T .  The values of the 

parameters affect the ranges and shape of the covariance models.  The covariance, e.g., 

decreases faster for increasing values of the a /c  ratio.  Certain extensions of the model 

(4) were proposed by Ma (2003b). 

 

Using Eq. (1), it is found that Heine’s model (4) is permissible for     n = 2 and 3, as well.  

Furthermore, new covariance models in Rn T  ( n >1) are derived from model (4) by 

applying the space transform of Eq. (2), i.e., 

 

cX ,n (r, ) = 0.5 E du
0

1
(1 u2)(n 1)/ 2 [exp( aur) Erfc(a c 1 0.5ur c 1 )  

                + exp(aur) Erfc(a c 1
+ 0.5ur c 1 )]  (5) 

 

Fig. 2B displays a plot of model (5) in R3 T  for the same ratio /c =0.5 used in Fig. 

2A. 
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III.  General PDE can generate new classes of permissible spatiotemporal covariance 

functions based on other well-known functions.  For example, Christakos (1992) used in 

R2 T  the physical PDE Ds,tZ(s,t) = X(s,t), where s = (s1,s2)  and 

Ds,t = a 2 t 2
+ b( 4 s1

4
+

4 s2
4 ) + 2b 4 s1

2 s2
2  to derive new spatiotemporal 

covariances cz(r, ) starting from existing ones, cx (r, ) , as follows 

 

cZ (r, ) = dk dwexp[i(k r + w )] (bk 4
+ aw2) 2 ˜ c X (k,w)   (6) 

 

where r = (r1,r2) , k = (k1,k2) , a  and b are positive coefficients, and   ̃
 c x (k,w)  is the 

spectral density of cx (r, ) .  For illustration, we let a = b =1 and use a spectral density of 

the form ˜ c x (k,w) = 2 (w k v) exp( 2k 2 /4) , where v  is a known velocity vector.  

Then, assuming spatial isotropy, Eq. (6) yields 

 

cZ (r, ) = 0.5 dk
0

k 3(k 2
+ v 2) 2 exp( 2k 2 /4) J0[k(r + v )] (7) 

 

in R2 T , where v = v .  Eq. (7) is calculated numerically leading to the covariance plot 

of Fig. 2C and 2D, for the combinations of =0.5 with v =3 and v =5, respectively. 

 

IV.  Similarly, starting from the physical PDE   Lp [Z(p)] = X(p)  in Rn T , where 

  Lp = ( t)Ls , S/T covariance models can be generated by means of the equation  

 

cZ (p,  p ) = du d  u cX (u,  u )g(p,u)g(  p ,  u ),   

 

where g  is the Green’s function that obeys the equation   Lp [g(p,u)] = (p u).  This 

process produces a versatile class of non-separable covariance models, not plotted here. 

 

3.2 Models generated from physical rules 
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I.  The diffusion equation inspired a non-separable spatiotemporal covariance model in 

Rn T  ( n =1, 2, 3) (e.g., Christakos, 2000):  

 

cx (r, ) (4 ) n / 2 exp( r2 /4 )                  (8) 

 

where > 0 .  Note that this model tends to a delta function as 0.  The symbol “ ” 

denotes that the covariance follows this functional form asymptotically but not close to 

the origin.  To obtain permissible covariance models, the singularity at zero lag must be 

tamed, e.g., by means of a short-range cutoff.  Short-range cutoffs are defined with 

respect to the physical scales of the underlying process and can be introduced either in 

the real or the frequency space (Hristopoulos, 2002).  The covariance model (8) is plotted 

for = 0.5  in R2 T  ( n =2, Fig. 3A), and in R3 T  ( n =3, Fig. 3B).  Clearly, the shape 

of the covariance, the correlation ranges and the behavior near the space-time origin 

depend on the n- and -parameter values. 

 

Furthermore, starting from Eq. (8) with n =1 and using Eq. (2), new covariance models 

can be found in Rn T  ( n = 2, 3) as follows     

 

cX ,n (r, ) = Bn du
0

1
(1 u2)(n 1)/ 2 exp( ur2 /4 ), (9) 

 

where Bn = (4 ) 1/ 2 En .  Since any model that is permissible in n  dimensions is also 

permissible in  n < n  dimensions, in R2 T   Eq. (8) leads to the covariance model 

 

  
cX ,2 (r, ) = 0.125 1/ 2( ) 1/ 2 E2 KummerM [0.5, 2, ZA ] (10a) 

 

where ZA = r2(4 ) 1, > 0, and the   KummerM ( )  function is a solution to the 

Kummer’s differential equation (Abramowitz and Stegun, 1972).  In R3 T , Eq. (8) 

yields the model (with r, > 0): 

 

cX ,3 (r, ) =0.5r 1E3 [(1 0.5ZA
1) Erf (ZA

1/ 2) + ( ZA ) 1/ 2 exp( ZA )] (10b) 
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Selecting a value of = 1.5, Eq. (10a) is plotted in Fig. 3C, and Eq. (10b) is visualized in 

Fig. 3D.  

 

II.  Different formulations and extensions of Eq. (8) are possible.  This flexibility allows 

to account for specific case-related physical features of the underlying process, to deal 

with the singularity at zero, etc.  Gneiting (2002) proposes space-time formulations which 

involve the addition of constants after the time lag.  A similar approach was suggested by 

Hristopulos (2002).  In this way Eq. (8) may be modified, e.g., as follows  

 

cX (r, ) = ( 2
+1) n / 2 exp[ r2 /( 2

+1)]   (11a) 

 

(0 1, 0 < 1).  The covariance class of Eq. (11a) has been used in fluid mechanics 

studies (e.g., Monin and Yaglom, 1975).  Certain generalizations of the form  

 

cX (r, ) = (B /( ) ) (r2 / ( ))  

 

have also been studied, where B, , , and  are physical coefficients and ( )  is a 

suitable function (see, Monin and Yaglom, 1975).  Starting from Eq. (11a) with n =1, 

= 0.5 , and applying the STF of Eq. (2) we find the new covariance models    

 

  
cX ,2 (r, ) = 0.25 ( +1) 1/ 2 E2 KummerM [0.5, 2, ZB ] (11b) 

and 

cX ,3 (r, ) =0.5 1/ 2r 1E3 [(1 0.5ZB
1) Erf (ZB

1/ 2) + ( ZB ) 1/ 2 exp( ZB )] (11c) 

 

where ZB = r2( +1) 1. Models (11b) and (11c) are plotted in Fig. 4A and 4B, 

respectively, for a selected value of the parameter .  Atmospheric turbulence studies 

(e.g., Pope, 2000) lead to further extensions of the covariance class of Eq. (8) in the form 

of cX (r, ) (b ) m exp( r2 / ) , which includes the cases m = 0 and m >1.5 in     R
3

T  
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(the coefficients m , a  and b obtain physical meaning in the context of the turbulence 

study considered). 

 

III.  Moreover, based on physical considerations a series of spatiotemporal covariance 

models can be derived from Eq. (9), such as    

 

cX (r, ) = (1+ b 2) 3 / 2 [1 0.5r2(1+ b 2) 1] exp[ 0.5r2 (1+ b 2)] (12a) 

and 

cX (r, ) = (1+ b 2) 5 / 2 {1 r2(1+ b 2) 1
+ r4[8(1+ b 2)2] 1} exp[ 0.5r2 (1+ b 2)] (12b) 

 

Models (12a) and (12b) in the R2 T  domain are illustrated in Fig. 4C and 4D, 

respectively, for b = 2 .  Note in these plots the presence of “hole effects”, which are 

mostly evident along the space direction. 

 

4. GENERALIZED COVARIANCES 

 

The S/TRF- /μ  theory of continuity orders  in space and μ in time is the main basis 

for the definition of generalized spatiotemporal covariance functions, which are asociated 

with non-homogeneous/non-stationary data.  We present here a noticeable class of non-

separable covariances that is useful for natural processes with white noise residuals, and 

has been widely used in the the area of applied geostatistics.  The class is given by 

 

X (r, ) = 0 (r) ( ) + (r) a ( 1) +1
= 0
μ 2 +1 + ( ) b

= 0 ( 1) +1r2 +1 +  

      d
= 0
μ

= 0 ( 1) + r2 +1 2 +1 + n,2 r2 log r ( 1)
= 0
μ c 2 +1 (13) 

 

where (r)  and ( )  represent the spatial and temporal delta functions, respectively,  n,2  

is Kronecker’s delta, and coefficients 
0
, a , b  c , d  are defined in a suitable 

manner.  The first three terms in Eq. (13) represent discontinuities at the space-time 

origin; the fourth term is purely polynomial; the fifth term, which is logarithmic in the 

space lag, is obtained only in R2 T .  A representation of the general model (13) is 
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plotted in Fig. 5, where we assumed that 0 = a = b = c = 0, d0 0 = d2 1 =1/4 , 

d0 1 =1/16, d1 0 =1/2, d1 1 =1/8 , and d2 0 =1. 

 

4. DISCUSSION 

 

This work reviews spatiotemporal, physically-based, non-separable covariance functions 

that have been developed in the geostatistics community in the last two decades.  It also 

presents methods that enable the expansion and construction of new covariance models, 

whereas additional models can be constructed by the linear superposition of permissible 

ones.  This enhanced collection of tools serves the accurate representation of the 

spatiotemporal continuity and variability in natural processes, and is invaluable for the 

tasks of spatiotemporal prediction in the developing field of renewable energy modeling.  

These tools are based on solid theoretical foundations; many of those have been 

successfully tested in a variety of interdisciplinary areas of research (e.g., geostatistics, 

risk analysis, atmospheric physics, etc.); finally, they offer increased flexibility and 

further development prospects to allow a precise shaping of their characteristics to the 

area-specific, emerging needs of modeling in the renewable energy domain.  
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Figures 

 

Figure 1:  Plots of the non-separable covariance model of Eq. (3) for a spatial domain of 

size L =1 in the R1 T  domain. The diffusion coefficient is D =0.05. 

 

Figure 2:  (A) Plot of the non-separable covariance model of Eq. (4) in the R1 T  domain 

and (B) in the R3 T  domain, for the ratio value /c =0.5.  In the lower pane, plots of 

the non-separable covariance model of Eq. (7) in the R2 T  domain for the parameter 

values of =0.5 and v=3 (C) and v=5 (D). 

 

Figure 3:  Plots of the non-separable covariance model of Eq. (8) in the R2 T  domain 

(plot A), in the R3 T  domain (plot B), of the model (10a) (plot C) and of the model 

(10b) (plot D) for selected values of the parameter . 

 

Figure 4:  The top row shows plots of the non-separable covariance model of Eq. (11b) 

(plot A) and of the model (11c) (plot B) for selected values of the parameter b.  In the 

bottom row, plots of the non-separable covariance models of Eq. (12a) (plot C) and of 

Eq. (12b) (plot D) for the parameter value b = 2 . 

 

Figure 5:  Plot of a non-separable generalized covariance in the     R
2

T  domain based on 

model (13). 
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