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ABSTRACT 
This work presents a Bayesian Maximum 
Entropy (BME) approach to solve the Stochastic 
Differential Equation (SDE) representing the 
axisymmetric radial displacements calculation 
problem for a circular excavation in an 
elastoplastic rock subjected to an initial 
hydrostatic stress field. The representation of 
the problem by an SDE instead of an ordinary 
differential equation has an important 
advantage: In addition to the physical law, the 
BME solution can assimilate other sources of 
general and site- specific information such as 
measurements in the case of this work. Also, the 
final solution of the stress- strain law is given in 
the form of a probability distribution of possible 
displacement values at each point in the 
direction of the radius of the excavation. This is 
the most complete way to describe a stochastic 
solution and provides considerable flexibility in 
selecting the displacements distribution that is 
more representative of the physical situation. 

1. INTRODUCTION 
Modeling techniques generating predictive 
distributions of critical parameters across space 
and time in underground excavations are 
common in earth related sciences (e.g. 
Yamamoto et al. 2000, Webster 2003). In view 
of the uncertainty characterizing these 
distributions, the physical equation has often the 
form of a Stochastic Differential Equation 
(SDE). In this case, the maps produced by the 
model represent the solution of the SDE given a 
set of possibly uncertain boundary/ initial 
conditions of the situation. In general, two 

groups of techniques are commonly used for the 
solution of a SDE: (1) one group focuses on 
obtaining solutions that are valid for specific 
realizations of the SDE coefficients (e.g., Monte 
Carlo or realization based techniques (Adler, 
1992)), and (2) another group is concerned with 
the estimation of stochastic moments (Kitanidis, 
1986). Both groups have advantages and 
drawbacks, and they should be viewed as 
complementary tools for determining the 
behavior of the stochastic solutions (Jordan and 
Smith, 1987). 

A different conceptual framework for 
obtaining stochastic solutions of physical SDE 
is suggested by the spatiotemporal Bayesian 
maximum entropy (BME) mapping approach 
introduced by Christakos (1990, 1991). The 
implementation of the BME approach to solve a 
Physical SDE differs from most standard SDE 
techniques by distinguishing between three 
stages of physical knowledge processing as 
follows: 

1. At the structural (prior) stage, BME 
generates an initial probability 
distribution across space and time based 
on the physical SDE as well as other 
forms of general knowledge (primitive 
equations, multiple- point statistics, etc.), 
whenever available. 

2. At the metaprior stage, databases 
expressing site- specific states of 
knowledge (e.g., uncertain observations 
or frequency distributions) are 
transformed into an operator form 
suitable for further processing 

3. At the integration (posterior) stage, the 
initial solution of (1) is enriched by 



assimilating the site- specific data from 
(2). The final solution is not limited to a 
single realization but includes the 
complete probability law at each space/ 
time point. 

As proposed by Christakos (1992, 2000), in 
theory two main techniques can be used in stage 
1 above: The so-called A technique, which does 
not need to solve the stochastic moment 
equations associated with the physical law, 
whereas the so-called B technique requires the 
solution of the moment equations. Christakos 
and Christopoulos (1998) examined several 
theoretical features of these techniques. Serre 
and Christakos (1999) used a numerical 
approach based on the B technique to study 
Darcy’s law representing groundwater flow in 
porous media, whereas Kolovos et al. (2002) 
developed a systematic computational approach 
based on A technique to solve a stochastic 
partial differential equation representing the 
advection- reaction distribution of a pollutant in 
a river. 

In this work we apply the B technique in rock 
mechanics. Since no previous application of the 
BME methodology is reported on the field, we 
study the relatively simple case of solving the 
SDE representing the axisymmetric radial 
displacements around a circular excavation in 
an elastoplastic rock, subjected to an initial 
hydrostatic stress field. The data used in the 
study come from measurements across the 
mount Kallidromon tunnel under development 
by the National Railway Organization in central 
Greece. 

2. ASSIMILATION OF GENERAL 
KNOWLEDGE BY THE BME APPROACH 

2.1 Displacement Law as General Knowledge 
In the application presented in this work, the 
general knowledge involves a physical law that 
governs the stress- strain distribution within the 
yield zone formed around a circular excavation 
in massive, elastic rock subjected to an initial 
hydrostatic stress field as shown in Fig. 1. The 
radial displacement u within the yield zone is 
given by the law represented as a differential 
equation (Brady and Brown, 1994). The 
complexity of the underground spatial rock 
structure often makes it difficult to account 

deterministically for all the contributing 
parameters in the physical law. In this sense, it 
is preferable to seek for a stochastic solution of 
the displacement problem. More specifically, 
we consider the radial displacement around a 
circular excavation in an elastoplastic rock, in 
which case the physical differential equation is 
as follows: 
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where u(r) denotes the radial displacement (in 
mm) inside the yield zone and it is positive in 
the direction outwards from the center of the 
tunnel, r is the distance from center (in m), p is 
the hydrostatic pressure acting on the rock mass 
(in kPa), p1 is the pressure on the boundary 
between elastic and fractured domains, G is the 
shear modulus (in kPa) and f is an 
experimentally determined dilation constant. In 
order to account for random influences, 
equation (1) is considered stochastic, in which 
case u(r) is modeled as a spatial random 
function of displacements (note that in (1), 
random variables are represented by bold 

letters). For (1) to be consistent, at least one of 
the “known” parameters must also be a random 
variable, so G is considered as a Gaussian 
random variable with mean mG and variance 
σG

2. Such a choice is justified on the basis of 
physical experience. 
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Figure 1: Stress distribution around a circular 
opening in a hydrostatic stress field. 



2.2 General Knowledge-Based SDE Solution 
The following analytical solution to the 
differential equation (1) is considered in terms 
of stress field realizations: 
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where C is a constant of integration which may 
be evaluated by substituting the value of u at r = 
re, where re is the radius of the interface between 
elastic and fractured domains (Fig. 1). This 
leads to the solution: 
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The boundary condition r = re is also a 

Gaussian random variable with mean mre and 
variance σre

2. This variable is considered 
independent from G. Thus, the two random 
variables re and G generate the whole random 
function u(r) as shown schematically in Fig. 2. 
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the solution becomes: 
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By (4), the mean and variance of L and G can 
be approximated by (Papoulis, 1991): 
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From (5), (6) and (7) we can calculate the mean 
and variance of the random function u(r) at any 
point r inside the yield zone and also the 
centered covariance between two points ri and rj 
as follows (Appendix A): 
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3. ASSIMILATION OF SITE-SPECIFIC 
KNOWLEDGE 
Following the general knowledge assimilation 
stage is the metaprior stage, at which the site-
specific knowledge is gathered and evaluated. In 
the case of this study, this knowledge consists of 
in situ measurements of radial displacements 
around the tunnel, and other experimentally 
determined parameters shown in Table 1. 
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Figure 2: The two initial/ boundary random 
variables generate the random function u(r) 
ubstituting into (3) the known dilation 
arameter f = 2 and 
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Given the relations (8), (9) and (10), the joint 
Probability Density Function (PDF) fg(ui,uj) of 
displacements between two points ri and rj can 
be calculated (Appendix A). At the final 
(posterior or integration) stage, the general and 
the site-specific knowledge are combined and 



logically processed in order to yield the final 

s
T

m
f
m
r
e
c
p
t
y
t
g
i
w
B
 

{ } ( ) )11()(),()()(/)(E 12
1

21
212 rurrcrurr uuuu −+==

σ
 

 

Table 1:  Parameters and the values used in the study 
Parameter Symbol Value 

Mean of Shear 
Modulus 

mG 25000kPa 

Standard Deviation 
of Shear Modulus 

σG 1000kPa 

Mean of radius re mre 7500mm 
Standard Deviation 
of radius re

σre 500mm 

Experimental 
dilation parameter f 

f 2 

Hydrostatic pressure p 2926kPa 
Pressure at re p1 1721kPa 
pecific PDF  fs(ui/uj=u). (Appendix B). 
here are two available displacement 

easurements; one on the tunnel wall and 5m 
rom its center that gives -175 mm and one at 8 
 from center that gives -93 mm. The first 

esult is used as a datum, while the second is 
mployed as a test point. An estimation value is 
alculated on each of a series of 15 equidistant 
oints set across the radius, from 5 to 8 m from 
he center of the tunnel cross-section, inside the 
ield zone. At each estimation point r2 we form 
he conditional PDF of the displacement at r2, 
iven the datum at r=5 m. Since this distribution 
s Gaussian, the most probable value coincides 
ith its mean, which is denoted by (Appendix 
): 
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Figure 3: Mean values of the estimated displacements 
inside the yield zone 

T
us
T

ve
un
ac
ac
0

50

100

150

200

0 1 2 3

h,r (m)

C
ov

(h
), 

V
ar

(r
) (

m
m

)2

0,99

1

R
(r

) Cov(h)
Var(r )
R( r )

Figure 4: Variance, covariance and correlation 
coefficient R, relative to the tunnel wall,  

inside the yield zone 
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Figure 5: Displacement probabilities at the test point 
r=8 m before and after taking into  

account the datum at r=5 m 
e above conditional mean at each point r is 
ed as the estimation of the displacement u(r). 
e numerical results are plotted in Fig. 3 
It is obvious that the fitting of the model is 
ry satisfactory. Figure 5 shows that even if the 
conditional PDF at the test point is wide, the 
curacy is greatly improved by taking into 
count the sample value at the tunnel wall. 



4. CONCLUSIONS 
We have presented a novel method to solve the 
SDE representing the axisymmetric problem of 
calculation of radial displacements around a 
circular excavation in an elastoplastic rock, 
subjected to an initial hydrostatic stress field. 
The method is based on the BME theory and it 
introduces solutions at every point in the form 
of complete PDF, which do not only account for 
the physical law of interest but also for other 
site-specific sources of knowledge, such as data 
from in-situ measurements.  

In the specific application, the adoption of 
BME methodology led to a significant 
improvement of accuracy, as compared to the 
standard deterministic estimation.Following the 
general knowledge assimilation 

APPENDIX A 

Given the first and second order moments of 
two random variables, the bivariate PDF that 
describes their joint probability density is 
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In order to calculate the means, variances and 
covariances in (A1) we have: 
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APPENDIX B 

If the random variables u1 and u2 are jointly 
normal with zero mean, then (A1) rewrites as: 
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where R the correlation coefficient of u1 and u2. 
The exponential above equals 
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Division by f(u(r1)) removes the second term 
and (B1) results: 
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Now, for 0, 21 ≠uu , replacing in (B2) u1 and u2 
by u1- 1u and u2- 2u , it is easily seen that 
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