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ABSTRACT

Spatiotemporal geostatistics provides tools for
coping with the variability and uncertainties
encountered in the study of real-world systems.
Among these tools, the covariance functions
alow us to understand space-time variations in
natural processes. Physica models, such as
differential equations and physical laws, provide
a powerful framework for the generation of
covariance functions, and considerably enrich
the class o widely used smple covariance
functions This work reviews the category of
non-separable covariances generated from
physical models, some of which have appeared
in the recent geodtatistics literature. Visual
representations are used to exhibit characteristic
features of covariance functions, and methods
for developing physically based covariance
functions that can cover user-specific needs for
awedlth of applications, are presented.

1. INTRODUCTION

The issues of variability and uncertainty are
often ercountered in the study of natural
processes. These may arise from reasons
inherent in the dynamics of the process
(ontologic causes). Otherwise, the may be due
to lack of accurate knowledge regarding the
process, in which case we refer to epistemic
limitations. This problem is most commonly
dedt with by means of satisticss. Whereas

classical satistics has traditionally displayed
shortcomings in the sufficient description of the
randomness in  natura  processes, the
Spatiotemporal Random Field (S'TRF) theory
(Christakos, 1991; 1992) has offered a powerful
framework for this purpose.

Of primary role in the STRF theory is the

STRF X(p), where p=(st)T R"" T is a
composite vector that combines the location
vector s in the n-dimensional Euclidean space

R" and the scaar time t along the time axis T.
Covariances are functions used in the S'TRF
theory that express the behavior of correlations
and interdependencies between points in
spaceltime (S/T). Very often covariances are
considered to be functions of only ST distances
between pairs of points p=(sit) and
pe=(sGt®), i.e, r=st¢ s (indicating spatial
homogeneit y) and t =t¢t (showing time
gationarity). The above are features of the
ordinary (or centered) covariances that we will
denote by c(r,t). If it the condition
c,(rit)=c,(r=Jr|t) holds, where |r| is the
magnitude of the vector r, the field is spatially
isotropic in the weak sense

Any function that is a permissible covariance
model (see following section) can be used in the
study of natural processes. There exists a
variety of ST separable models (eg.,
Christakos and Hristopulos, 1998; Kyriakidis
and Journd, 1999), as well as non-separable



models in whichthe space and time components
are integrated in the covariance expression (e.g.,
Christakos 1991, 1992, 2000; Christakos and
Hristopulos, 1998; Mardia et al., 1998; Cressie
and Huang, 1999; Ma, 2002, 2003a, 2003b;
Gneiting, 2002).

This work focuses on the more realistic non-
separable covariance functions, and specifically
ones based on physical models. The concept of
accounting for the underlying physics in a
stochastic problem has been successfuly tested
in Kolovos et al., 2002. Covariance functions
built from physicd models (when possible)
account for the interdependencies in random
fields more reliably than ad hoc geostatistical
models, since physical models incorporate the
underlying physics of natural processes. In that
sense, physicsbased covariance functions have
an advantage over commonly used simple
models (e.g., the linear or the exponentia
models). In the following, we will present and
visualize some theoretical, physics-based, non-
separable covariance models, as well as ways to

construct new ones by means of space
transformation (STF) operators.
2. PERMISSIBILITY AND SPACE

TRANSFORMA TIONS OF COVARIANCES

Not al functions are permissible covariance
models. Based on Bochner's theorem
(Christakos, 1992), a function c, .(r,t) in the

R""T domain (n=123) is in generd a

permissible ordinary covariance if and only if its
spectral density (i.e., its Fourier transform)

Cyn (kW) = (cdrdt e (rit) (1)

is non-negative and its total variation is
bounded. Appropriately modified criteria
define the permissibility of non-centered
covariances(e.g., earlier reference).

New covariance functions can be constructed
from permissible ones. In particular, Christakos
(1984b, 1986) introduced STF operators that
permit constructing covariance functions in two
and three dimensions from one-dimensional
models. One STF operator links a covariance

model c,,,in R" T , with covariance models
G IN R T (n=2,3) , by means of the
integral relation

Con(r 1) = E, Qdu(- u?)™ ¢ (ur 1), (2)

where E, =26n)/pdn-1/2)) ad ¢ is
the gamma function. The STF analysis implies
that from a permissible covariance model in
R T, anew mode can be derived in R"" T
by means of Eqg. (2).

Another STF operator relates the spectral
densty C,, (in R T) with the spectra

densities C,, (in R"" T; n=2, 3) by means of
thefollowing equations:

C,o(k,w) =
¥ (33
=0 du(u® - k?)¥2 L[u* L¢  (u,w)]
Ex,3(k’W =- (1/2p)k—1%6‘x1(k,W) (3b)

Expressions analogous to Egs. (2) and (3) in
R"" T can be deived from different STF
operators.

A permissble covariance model ¢, in
R'" T is not necessarily permissible in R"" T.
One needs to derive the spectra density c,,,
and then test if it satisfies the requirements of
Bochner’s theorem.

In contrast, any model that is permissible in
n dimensons is aso pemissble in N
dimensions, where n(<n (Christakos, 1984a).
In some cases it may be more convenient
mathematically to investigate the permissibility
of a covariance model in R®*" T, regardless of
the domain of interest.

3. COVARIANCES GENERATED FROM
PHYSICAL MODELS

Wewill classifythe covariances in this category
based on the method by which they ae

generated Many of them are derived from



solutions of partial differential equations (PDE).
Others are based on a variety of physica
models, as demonstrated in the following.

3.1 Models derived from differential equations

A large class of non-separable spatiotemporal
covariance madels is associated with the general
stochastic PDE 1/Tt[X(p)] = L,[X(p)], where
L, isalinear spatia differentia operator in R".
Anexample from this class is the general form
of (non-centered) covariances given below
(Christakos and Hristopul os, 1998)

C.(st;s(t) =

_ o 4
= A k=0 C1j (s)Cy (ShC,; (t)C i (19

where c,; and c,; represent eigenfunctions
(modes) of the PDE. Each mode has an
amplitude A;, which is determined from the
boundary and initial conditions (B/IC). In Eq.
(4) the coefficients c;, represent correlations of
the mode coefficients, i.e., the ensemble average
Cik =AjA.. Randomness in the covariance

model of Eg (4 can be introduced,
respectively, by: (i) the B/IC, leading to random
coefficients A;; (ii) the differential operator L,
leading to random eigenfunctions c,;; and (ii)
by both of the above. Modds (4 may be non-
homogeneous / non-stationary due to a number
of reasons, including the B/IC effects.

For visualization purposes, we followed the
example discussed in  Christakos and

Hristopulos (1998) in R"" T. A diffusion PDE
is considered with a parabolic initia
concentration  profile given by f(s)=

Co4(s/L)(1- s/L)!, where ¢, is a random
variablewith ¢S =1 and L isthe domain size.
Then ¢, =a;a, ¢, =cos(jps/L) ad c,; =
exp(- Dj’p’t/L?), where D is the diffusion
coefficient; also, a, =-8(jp) - [1+(- D' (if
j>0), and a; =2/3 (if j=0). By inserting
these parameters in Eqg. (4) and letting L=1 we

obtained the covariance C,(s,t;s¢t®) plotted in
Figure 1.

5'=0, D=0.05

Cos. ke 1)

Figure 1: Plots of the non-separable covariance model
of Eq. (4) for a spatid domain of size L=1 in the

R'" T domain. The diffusion coefficient is D =0.05.

This function depends on the S'T coordinates
of both points p=(s,it) and p¢=(s(tQ), and
not just on the space and time distances between
the points. In Figure 1 we plot the covariance
values between points in the (s, t)-domain, and
the points (s¢=0,t® and (s¢t¢=0) throughout
thelength L for D=0.05.
The following covariance model

c,(rt)=
= 0.5exp(- ar)Erfe(ay/c 't - 0.5r4/a )  (5)

+exp(ar)Erfaa/ct +0.5r/ct )]

is based on a parabolic PDE modd initialy
proposed by Heine (1955). The a and c ae
coefficients associated with the parabolic PDE,
and Erfdx) is the complementary error
function defined as:

N

Erf) = (2/p) § dvexp(-v?), if x3 0

f2- Erfa- x), if x<O0

Mode (5) represents spatially homogeneous and
temporally stationary fieldsin R*” T. Notice

that ¢ ® 2Erfqayt/c) & r® 0; and



¢, ®s?as r,t ® 0. The model (5) is plotted
in Figure 2A for a choice of a-and c-valuesin
R~ T. The values of the parameters affect the
ranges and shape of the covariance models.

(A) ale=0.5

(B): v=5
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Figure 2:
model of Eq. (5 inthe R*” T domain for the ratiovalue

(A) Plot of the non-separable covariance

a/c=05. (B) Plot of the non-separable covariance

model of Eq. @) inthe R?” T domain for the parameter
valuesof @ =0.5and V=5.

The covariance, e.g., decreases faster for
increasing values of the a/c ratio. Using Eq.
(3), it is found that Heines model (5 is
permissible for n=2 and 3, as well. Certain
extensions of the model (5) were proposed by
Ma (2003b). Furthermore, new covariance
models in R"" T (n>1) are derived from
model (5 by applying the space transform of
Eq. (2), i.e,

Cx,n(r 1t ) =0.5E (\gldu (1- u2) ©-1)/2~-

“[exp(- aur) Erfc(a«/c'1 - O.5urq/ct 4+
+ exp(aur)Erfo(a\/c’'t +0.5ur\/a )] (6)

Generd PDE can generate new classes of
permissible spatiotemporal covariance functions
based on other well-known functions. For
example, Christakos (1992) used in R*" T the
physca PDE D,Z(st)= X(st), where
s=(s.5,) and D, =-af?/1t

(T /T8’ +1°/0s3) + 261 /0] to
derive new spatiotemporal covariances c,(r,t)
starting from existing ones, c,(r,t), asfollows

¢ (k,w)

c,(r t) = ek dwe ™) K +aw?y’

()

where r=(r,r,), k=(k.k,), a and b are
positive coefficients, and C,(k,w) is the
spectral density of ¢, (r,t). For illustration, we
le¢ @a=b=1 and use a spectral density of the
form c (k,w) =2pd(w- kw)exp(-a *k?*/4),

where Vv is a known velocity vector. Then,
assuming spatial isotropy, Eq. (7) yidds
¥
c,(rt)=0.5a () dkk (K + V)2
9 ®

“exp(-a’k?/4) I K (r +vt)]

in R T, where v=|v|. Eq. (8 iscalculated

numerically leading to the covariance plot of
Figure 2B.
Similarly, starting from the physical PDE

L,[Z(p)] = X(p) in R"" T, where
L, =(1/1t)L;, ST covariance models can be
generated by means of the equation

c,(p,p9= ¢ (dudutc(u,udg(p,u)g(ptu9,

where g is the Green's function that obeys the
equation L,[g(p,u)] =d(p- u). This process
produces a versatile class of non-separable
covariance models, not plotted here.

3.2 Models generated from physical rules
The diffusion equation inspired a non-separable

spatiotemporal covariance model in R'° T
(n=1, 2, 3) (e.g., Christakos, 2000):
c (r,t) @dapt) "*exp(-r’/4at) ©

where a >0. Note that this model tends to a
delta function as t ® 0. The symbol “ (¢’
denotes that the covariance follows this
functional form asymptotically but not close to
the origin. To obtain permissible covariance
models, the singularity at zero lag must be
tamed, e.g., by means of a short-range cutoff.
Short-range cutoffs can be introduced in relation
to physicd scaes of the underlying process



(Hristopoulos, 2002). The covariance model (9)
isplotted for a =0.5in R*" T (n=3) in Figure
3A.

(A): o=0.5

[B): a=1.6

Figure 3: (A) Plot of the non-separable covariance
model of Eq. (9) inthe R*” T domain. (B) Plot of the

model (11b), againin R®” T, for selected values of the
parameter A .

Clearly, the shape of the covariance, the
correlation ranges and the behavior near the
space-time origin depend on the n- and a-
parameter values

Furthermore, starting from Eq. (9 with n=1
and using Eg. (2), new covariance models can

befoundin R"" T (n=2, 3) asfollows

Cx,n(rat ) = Bn Ql du (1_ u2)(n-1)/2 (10)

“exp(-ur?/dat)

where B =(4apt)Y?E_ . Since any model
that is permissble in N dimensions is aso
permissiblein nt<n dimensions,in R*" T Eq.
(9) leads to the covariance model

C,(rt)=012%"?*@t) ?E,

(11a)
" KummerM[0.5, 2,- Z,]

where Z, =r?(4at)*, t>0, and the

KummerM (®) function is a solution to the

Kummer's differential equation (Abramowitz

and Stegun, 1972). In R*" T, Eq. (9 yields the

model(with r,t >Q0):

C,5(rt)=05r"E[(1- 0.52, ) Erf (Z,'*

+ (p ZA)_llzeXp(' ZA)]
(11b)

Eq. (11b) is plotted in Figure 3B for a =1.5

Different formulations and extensions of Eq.
(9) are possible (in order to dea with the
singularity at zero, to account for physica
features of the underlying process etc.).
Gneiting (2002 proposes  space-time
formulations which involve the addition of
constants after the time lag. A similar approach
was suggested by Hristopulos (2002). In this
way Eq. (9) may be modified, e.g., as follows

c () =(bt @ +1) "2exp[- r2/(bt % +1)] (123)

(CEb £1, 0<g£1). The covariance class of
Eqg. (12a) has been used in fluid mechanics
studies (e.g., Monin and Yaglom, 1975).
Certain generaizations of the form

o (r,t)=(BI(t-z) )f (r2/c(t - 2))

have aso been studied, where B, z, ¢, and |
are physical coefficients and f (*) is a suitalde
function (see, Monin and Yaglom, 1975).
Starting from Eqg. (12a) with n=1, g=0.5, and
applying the STF of Eq. (2) we find the new
covariance models

Co(rt)=0.25 (bt +1)*'?

" E, KummerM[05,2,- Z;]
and
C,5(rt)=05"r'E,[(1- 0.5Z,")

, Erf (ZB:LIZ) +(p ZB)-lIZ eXp(' ZB )]

(12b)

(1)

where Z, =r*(bt +1)"*. Modd (1) is plotted
in Figure 4A for a selected value of the
parameter b. Atmospheric turbulence studies
(e.g., Pope, 2000) lead to further extensions of
the covariance class of Eq. (9 in the form of
c (rt) @bt ) "exp(- r’/at), which includes
thecases m=0 and m>1.5 in R®" T (the
coefficients m, a axd b obtain physca
meaning in the context of the turbulence study
considered).

Moreover, based on physical considerations a
series of spatiotemporal covariance models can
be derived from Eq. (9), such as



c (rt)=(+bt?)¥?1- 0.5r2

, (139)
(L+Dbt ?)*]exp[- 0.5r3/(1+bt )]

(A} =1

{B): =2

Figure 4. (A) Rot of the non-separable covariance
model (12c) in R®” T for the parameter value D=1
(B) Plot of the non-separable covariance model of Eq.
(13b)in R*" T for the parameter value b=2.

and

c (rt)=(1+bt?) ?
*{1- r?(L+bt 2) + r “[8(L+ bt 22T} (13b)
" exp[- 0.5r%/(1+Dt %)

Covariance model (13b) in the R*” T domainis
plotted in Figure 4B for b=2. Among the
naticeable features of this plot is the presence of

“hole effects’, mainly, aong the space
direction.

4. CONCLUSIONS

In this work permissible, non-separable

covariance functions based on physical models
were reviewed and approaches for constructing
new modes were proposed The suggested
models broaden the scope for the researchers
who need to employ covariance functions in
their studies, and offer model options based in
physics and differential  equations for
investigations of space/time variations in natural
systems.
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