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Abstract

Environmental processes (e.g., groundwater contaminants, air pollution patterns, air–water and air–soil energy exchanges) are

characterized by variability and uncertainty. Spatiotemporal random fields are used to represent correlations between fluctuations

in the composite space–time domain. Modelling the effects of fluctuations with suitable covariance functions can improve our ability

to characterize and predict space–time variations in various natural systems (e.g., environmental media, long-term climatic evolu-

tions on local/global scales, and human exposure to pollutants). The goal of this work is to present the reader with various methods

for constructing space–time covariance models. In this context, we provide a mathematical exposition and visual representations of

several theoretical covariance models. These include non-separable (in space and time) covariance models derived from physical

laws (i.e., differential equations and dynamic rules), spectral functions, and generalized random fields. It is also shown that non-sep-

arability is often a direct result of the physical laws that govern the process. The proposed methods can generate covariance models

for homogeneous/stationary as well as for non-homogeneous/non-stationary environmental processes across space and time. We

investigate several properties (short-range and asymptotic behavior, shape of the covariance function etc.) of these models and pre-

sent plots of the space–time dependence for various parameter values.
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1. Introduction

The vast majority of environmental processes (e.g.,

flow and transport distributions, pollutant trends, and

soil–air–water energy exchanges) are characterized by

significant variability and uncertainty that result from

ontologic factors and epistemic limitations. The former

are due to the inherent complexity of the natural sys-

tems, whereas the latter are associated with incomplete
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information (e.g., resulting from an inability to collect

enough data, poor understanding of the underlying
mechanisms, limited computational capabilities and

numerical errors). Classical statistics approaches often

fail to provide a sufficient description of a process� evo-
lution across space and time, which makes it necessary

to model it in terms of the spatiotemporal random field

(S/TRF) theory, ordinary or generalized. The S/TRF

theory accounts for the fact that the physical laws affect

both the mean and the space–time covariance function
of the associated environmental processes. For example,

in hydrologic modelling the covariance of the hydraulic

head is related to the covariance of the hydraulic con-

ductivity by means of an equation determined from
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the respective physical laws (i.e., Darcy�s law and conti-
nuity equation; see, e.g., [34].

Let X(p) be a S/TRF, where p = (s, t)2Rn ·
T (T � R1); the vector s denotes spatial location in the
n-dimensional Euclidean space Rn and the scalar t de-

notes time along the axis T. The S/TRF theory distin-
guishes between two major groups of spatiotemporal

covariance functions, as follows (for a detailed presenta-

tion of the S/TRF theory see, [7,8,12]):

� The group of ordinary covariance functions, de-
noted by cX. The ordinary centered covariance func-

tion is defined by cX ðr; sÞ ¼ X ðs; tÞX ðsþ r; t þ sÞ�
X ðs; tÞX ðsþ r; t þ sÞ, where the bar denotes stochastic
expectation. The ordinary non-centered covariance
function is defined as CX ðr; sÞ ¼ X ðs; tÞX ðsþ r; t þ sÞ.
The centered covariance provides explicit expressions

of the correlations, whereas the non-centered covariance

also includes information about the trend dependence

that control the distribution of the natural process

X(p). In theoretical investigations and applied geostatis-
tical analyses the ordinary covariance functions are

often considered to represent space homogeneous/time
stationary S/TRF, in which case they are functions only

of the space and time distances, r = s 0 � s and s = t 0 � t,
respectively, between any pair of points p = (s, t) and
p 0 = (s 0, t 0). If the random field is space homogeneous/

time stationary, and if cX(r,s) = cX(r = iri,s), where iri
is the magnitude of the spatial distance vector r, the field
is spatially isotropic in the weak sense (sometimes re-

ferred to as second-order isotropy, as well). If the two
points are considered at the same instant in time, a

weaker condition that defines spatial isotropy is

cX(r, 0) = cX(r = iri, 0). The cX(r,s) often (although not
necessarily) tends asymptotically to zero, unless it is dif-

ferent from zero only within a bounded interval and be-

comes equal to zero outside this interval (e.g., the

spherical model). If the covariance function is integrable

in space or time, it has a finite correlation range in the
respective domain. The covariance spectral density,
~cX ðk; xÞ, is the Fourier transform of the covariance

function in the frequency domain (see Appendix). In

the this domain, the vector k represents the spatial fre-
quency (wave-vector), and x the time frequency.

� The group of generalized covariance functions, de-
noted by jX, are linked with generalized S/TRF which
are used to represent non-homogeneous/non-stationary
natural patterns, physical coarse graining, and multi-

scale processes. Fractals and wavelets are special cases

of the generalized S/TRF theory. The generalized covar-

iances behave differently than the ordinary ones, because

they are derived from functional linear representations

of the original random field X(p). The field�s degree of
departure from homogeneity/stationarity is expressed

by means of the space and time continuity orders. The
behavior of the covariance at large distance is not neces-

sarily decreasing and, thus, correlation ranges are not
defined. Permissibility criteria are mathematical condi-

tions that a function must satisfy in order to be a per-

missible covariance model, of the ordinary or the

generalized kind. An extensive list of covariance permis-

sibility criteria is available, depending on the random

field type, e.g., homogeneous vs. non-homogeneous, sta-
tionary vs. non-stationary [4,8,12]. As is discussed in

these references, in the case of homogeneous/stationary

random fields, many of the permissibility criteria are a

direct consequence of Bochner�s theorem: a function is
a permissible covariance model if and only if its spectral

density is non-negative and the integral of the spectral

density over all frequencies is bounded (see also the fol-

lowing section). In the case of non-homogeneous/non-
stationary fields, a suitable mathematical extension of

Bochner�s theorem is required (see references above).
The covariance function is separable if it can be

decomposed into components (e.g., by means of a prod-

uct or a sum) with purely spatial or temporal depend-

ence, and non-separable if such a decomposition is not

possible. For example, separable ordinary covariance

functions can have the general form cX(s, t; s
0, t 0) =

cX(1)(s, s
0)cX(2)(t, t

0), where cX(1)(s, s
0) is a purely spatial

and cX(2)(t, t
0) a purely temporal covariance. Separable

models of space–time covariance functions are valuable

in both physical and health applications (e.g., [2, p. 51–

59;12, p. 102–109 and 163–170;26, p. 664–666]). How-

ever, in many cases non-separable models are physically

more realistic. Several theoretical models of non-separa-

ble covariances can be found: (a) in the spatiotemporal
stochastics literature [2,3,7–15,19,37]; as well as (b) in

the statistics literature [16,18,20,27–30,33,36]. Covari-

ance models of the group a above can be generated from

partial differential equations representing physical laws,

construction of permissible spectral densities, dynamic

rules (e.g., algorithmically tractable physical models of

growth that cannot be expressed in terms of differential

equations), generalized random fields, etc. In this work
we investigate covariance models of the group a, and

provide appropriate visualizations of some of their most

important features across space and time.
2. Non-separable spatiotemporal covariance models

The non-separable covariance models that we investi-
gate below include spatially homogeneous/temporally

stationary as well as non-homogeneous/non-stationary

S/TRF (including generalized and fractal models, see

also Section 2.3 below). We study the main characteris-

tics of these models as well as their space–time behavior

for several combinations of their parameters.

Before continuing with the classes of non-separable

covariance models, we discuss space transformation

operators that permit constructing covariance models

in two and three dimensions from one-dimensional
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models. In particular, [4,6] introduced space transforma-

tion operators, which were later applied to various prob-

lems (see [12], for a detailed review of the relevant

literature). The classical Radon theory (Radon, 1917;

[35]) provides a general formulation for deriving space

transformation operators (e.g., the geostatistical turning
bands method is a special case of the Radon theory).

One space transformation operator links a covariance

model, cX,1, in R
1 · T with covariance models, cX, n, in

Rn · T (n = 2,3) by means of the integral relation

cX ;nðr; sÞ ¼ En

Z 1

0

duð1� u2Þðn�1Þ=2cX ;1ður; sÞ; ð1Þ

where En ¼ 2CðnÞ=ð
ffiffiffi
p

p
C½ðn� 1Þ=2�Þ, C is the gamma

function, and r = iri is a scalar that refers to the magni-
tude of the lag vector r. Space transformation implies
that if a permissible covariance model is available in

R1 · T, new models can be derived in Rn · T (possibly
geometrically anisotropic after an appropriate change
of variables) by means of Eq. (1). The space transforma-

tion approach can be used in the frequency domain, as

well. Indeed, another space transformation operator re-

lates the spectral density ~cX ;1 of the covariance function

cX,1 (in R
1 · T) with the spectral densities ~cX ; n of cX, n (in

Rn · T; n = 2,3) by means of the following equation

~cX ;nðk;xÞ ¼

R1
k duðu2 � k2Þ1=2


 d
du ½u�1 ddu~cX ;1ðu;xÞ� for n ¼ 2;

�ð1=2pÞk�1 d
dk ~cX ;1ðk;xÞ for n ¼ 3;

8><
>:

ð2Þ
where the scalar k is the magnitude of the space–fre-

quency vector k. Eqs. (1) and (2) above are instrumental
in developing new classes of non-separable covariance

models in space–time. In light of Bochner�s theorem, gi-
ven a covariance model cX,1 that is permissible in R

1 · T,
one can examine the permissibility of the same function

in Rn · T by deriving its spectral density ~cX ;n from Eq.
(2) above, and then testing if the requirements of the
Bochner theorem are satisfied for the obtained function.

The same space transformation approach as above ap-

plies in the case of generalized covariance models [4, p.

258]. Useful expressions analogous to the Eqs. (1) and

(2) can be derived in terms of different combinations

of space transformation operators in Rn · T.
In addition, any model that is permissible in n dimen-

sions is also permissible in n 0 dimensions, where n 0 < n.
Since permissibility in n = 3 implies permissibility in

n = 2 [4], in some cases it may be more convenient mathe-

matically to investigate the permissibility of a covariance

model in R3 · T, even if the domain of interest is R2 · T.
Note that anisotropic models can be trivially derived

from the isotropic ones generated by Eqs. (1) or (2)

above. In the case of geometric anisotropy, an aniso-

tropic model can be obtained from an isotropic one by
means of a coordinate rotation and rescaling of the axes.
Alternatively, the anisotropic parameters can be deter-

mined directly from the data using the method proposed

in [22,24]. If the coordinates are then transformed by

respective rotation and rescaling transformations the

process can be modelled by means of an isotropic model.

2.1. Covariance models generated from physical differen-

tial equations

Many spatiotemporal covariance models can be de-

rived as solutions of physical partial differential equations

(pde). Covariance functions that are generated by expli-

cit solutions of governing pde are permissible by con-

struction, so long as all the covariance functions that
pertain to the pde inputs (e.g., sources, initial and

boundary conditions) are permissible. It should be no-

ticed that the covariance functions are often called

two-point statistics in the physics and engineering litera-

ture because they express physics-based correlations be-

tween pairs of points in space–time.

A large class of non-separable covariance models is

associated with the general stochastic pde, o=ot½X ðpÞ� ¼
LS ½X ðpÞ�, where LS is a linear spatial differential oper-

ator in Rn · T. This class includes various covariance
models, one of which is the family of non-centered

covariances given below [12, p. 109–112]

CX ðs; t; s0; t0Þ ¼

P1
j:k¼0

cjkv1jðsÞv1kðs0Þv2jðtÞv2kðt0Þ;

P1
j;k¼0

AjAkcvðj;kÞðs; s0Þv2jðtÞv2kðt0Þ;

P1
j;k¼0

AjAkv1jðsÞv1kðs0Þv2jðtÞv2kðt0Þ;

8>>>>>>><
>>>>>>>:

ð3a–cÞ
where v1j and v2j represent eigenfunctions (modes) of the
differential equation. Each mode has an amplitude Aj,

which is determined from the boundary and initial con-

ditions. In Eq. (3a) the coefficients cij represent correla-

tions of the mode coefficients, i.e., they correspond to

the ensemble average cjk ¼ AjAk. In Eq. (3b) the function

cv(j, k) denotes the mode correlation v1jðsÞv1kðs0Þ and Aj
are deterministic mode amplitudes. In (3c) the Aj are

random variables to be determined from the boundary

and initial conditions (B/IC). Randomness in the covar-

iance models of Eq. (3) can be introduced by: (i) the B/

IC leading to random coefficients Aj; (ii) the differential

operator LS leading to random eigenfunctions v1j; and
(iii) by both of the above. Models (3) may be non-homo-

geneous/non-stationary due to a number of reasons,
including the boundary and initial condition effects.

For visualization purposes, a diffusion pde in the

R1 · T domain is considered with a diffusion coefficient
D. The initial condition is a parabolic concentration

profile of the length L of the domain, i.e. f(s) = c04

(s/L)(1 � s/L)�1, where c0 is a random variable with
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c20 ¼ 1 and L is the domain size. Then, cjk ¼ c20ajak,
v1j = cos(jps/L) and v2j = exp(�Dj2p2t/L2); aj = 2/3

(if j = 0), = �8(jp)�2 � [1 + (�1)j] (if j > 0). By inserting
Fig. 1. (a) Plots of the non-separable covariance model of Eq. (3a) for a spatia

D = 0.01. (b) Plots of the non-separable covariance model of Eq. (3a) for a spa

is D = 0.05.
these parameters into Eq. (3a) and letting L = 1 we ob-

tained the (non-centered) covariance function CX(s, t;
s 0, t 0) plotted in Fig. 1. This function depends on the
l domain of size L = 1 in the R1 · T domain. The diffusion coefficient is
tial domain of size L = 1 in the R1 · T domain. The diffusion coefficient
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space/time coordinates of both points p = (s, t) and

p 0 = (s 0, t 0), and not just on the space and time distances

between the two points. More specifically, in Fig. 1 we

plot the covariance values between points in the (s, t)-do-

main and the points (s 0 = 0, t 0) and (s 0, t 0 = 0) throughout

the domain. We create these plots for two different val-
ues of the coefficient D in Fig. 1a and b. Several other

spatiotemporal covariance models can be generated

from Eq. (3) using different boundary and initial

conditions.

Non-separable covariance models across space and

time are obtained from parabolic pde, as well. The fol-

lowing non-separable covariance model

cX ðr; sÞ ¼ 0:5
h
expð�arÞErfc



a

ffiffiffiffiffiffiffiffiffi
c�1s

p
� 0:5r

ffiffiffiffiffiffiffiffiffi
cs�1

p �
þ expðarÞErfcða

ffiffiffiffiffiffiffiffiffi
c�1s

p
þ 0:5r

ffiffiffiffiffiffiffiffiffi
cs�1

p
Þ
i

ð4Þ

is derived from a model initially proposed by Heine [21,

p. 170–178]. The a and c are constant coefficients associ-

ated with the parabolic pde, and Erfc(x) is a comple-

mentary error function, see Eq. (A.3) of the Appendix.

The above model represents spatially homogeneous/
temporally stationary fields in R1 · T. Notice that
cX ! 2Erfcða

ffiffiffiffiffiffiffi
s=c

p
Þ as r!0; and cx!r2 as r, s!0.

The model (4) is plotted in Fig. 2 for various choices

of the coefficient values a and c. The values of the coef-

ficients affect the ranges and shape of the covariance

models. The covariance, e.g., decreases faster for

increasing values of the a/c ratio. Another observation
Fig. 2. Plots of the non-separable covariance model of Eq. (4) in the R1 · T do
(plots C and D) for various values of the ratio a/c.
is that the covariance declines faster in the spatial than

in the temporal direction. Using Eq. (2), it is found that

model (4) is permissible for n = 2 and 3, as well. Certain

extensions of the model (4) were proposed by Ma [29].

Furthermore, new covariance models in Rn · T
(n > 1) are derived from model (4) by applying the space
transformation of Eq. (1) above, i.e.,

cX ;nðr; sÞ ¼ 0:5E
Z 1

0

duð1� u2Þðn�1Þ=2
h
expð�aurÞErfc



a

ffiffiffiffiffiffiffiffiffi
c�1s

p

� 0:5ur
ffiffiffiffiffiffiffiffiffi
cs�1

p �
þ expðaurÞErfc



a

ffiffiffiffiffiffiffiffiffi
c�1s

p

þ 0:5ur
ffiffiffiffiffiffiffiffiffi
cs�1

p �i
: ð5Þ

Models (5) are plotted in Fig. 2 for n = 3. Space–time

plots render the behavior of the covariance model in

the entire space–time domain, in contrast with standard

practice (e.g., varying r and keeping fixed s, or vice
versa). Consider, e.g., Fig. 2, in which visualizing the

covariance model behavior in the composite space–time

domain (varying both r and s) provides better under-
standing of space–time dependence than simple space

or time covariance plots allow.

A non-separable spatiotemporal covariance model in

Rn · T (n = 1,2,3) inspired from the diffusion equation,
with several physical applications, is the following [9,
p. 226]

cX ðr; sÞ ffi ð4apsÞ�n=2
expð�r2=4asÞ; ð6Þ
main (plots A and B), and of the model in Eq. (5) in the R3 · T domain
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where a > 0. Note that this model tends to a delta func-
tion as s!0. The symbol ‘‘@’’ denotes that the covari-
ance is of this functional form asymptotically as r!1
and s!1 but not close to the origin. To obtain permis-

sible covariance models, the singularity at zero lag must

be tamed, e.g., by means of a short-range cutoff. Short-
range cutoffs are related to physical scales of the under-

lying process [22, p. 45]. The cutoff can be implemented

either in real space or in frequency space; in the latter

case it is a high-frequency cutoff [23]. In either case,

the modified function needs to be checked for permissi-

bility. The covariance model (6) is plotted for a = 0.5 in
R2 · T (n = 2) in Fig. 3A, and in R3 · T (n = 3) in Fig.
3B. The shape of the covariance changes with the n-
and a-values. Clearly, the same is true for the correlation
ranges and the behavior near the space–time origin. Fur-

thermore, starting from Eq. (6) with n = 1 and using Eq.

(1) new covariance models can be found in Rn · T
(n = 2,3) as follows

cX ;nðr; sÞ ¼ Bn

Z 1

0

duð1� u2Þðn�1Þ=2 expð�ur2=4asÞ; ð7Þ

where Bn = (4aps)�1/2En. Recall that if a model is per-
missible in n dimensions, it is also permissible in n 0

dimensions, where n 0 < n. More specifically, in R2 · T
the Eq. (7) leads to the covariance model

cX ;2ðr; sÞ ¼ 0:125p1=2ðasÞ�1=2E2 KummerM½0:5; 2;�ZA�;
ð8aÞ
Fig. 3. Plots of the non-separable covariance model of Eq. (6) in the R2 · T do
and of the model (8b) (plot D) for selected values of the parameter a.
where ZA = r
2(4as)�1, s > 0, and the KummerM(Æ) func-

tion is a solution to the Kummer�s differential equation
(see, Eq. (A.4) of Appendix). Model (8a) is plotted in

Fig. 3C. In R3 · T, Eq. (7) yields the model

cX ;3ðr; sÞ ¼ 0:5r�1E3½ð1� 0:5Z�1
A ÞErfðZ1=2A Þ

þ ðpZAÞ�1=2 expð�ZAÞ� ð8bÞ

(r, s > 0). Eq. (8b) is plotted in Fig. 3D.
Other formulations as well as extensions of Eq. (6)

are possible (in order to deal with the singularity at zero,

to account for physical features of the underlying proc-

ess etc.). Gneiting [18, p. 593] proposes space–time for-

mulations which involve the addition of constants

after the time lag. A similar approach was suggested

by Hristopulos [22, p. 46] in the spatial case. In this
way Eq. (6) may be modified, e.g., as follows

cX ðr; sÞ ¼ ðbs2c þ 1Þ�n=2
exp½�r2=ðbs2c þ 1Þ� ð9aÞ

(0 6 b 6 1, 0 < c 6 1). The covariance class of Eq. (9a)
has been used in fluid mechanics studies (e.g., [31, p.

156–160]). Certain generalizations of the form

cX ðr; sÞ ¼ ðB=ðs � fÞkÞ/ðr2=vðs � fÞÞ
have also been investigated, where B, f, v, and k are
physical coefficients and /(Æ) is a suitable function (see,
[31, p. 161]). Starting from Eq. (9a) with n = 1, c = 0.5,
and applying the space transformation of Eq. (1) we find

the new covariance models
main (plot A), in the R3 · T domain (plot B), of the model (8a) (plot C)
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cX ;2ðr; sÞ ¼ 0:25pðbs þ 1Þ�1=2E2 KummerM½0:5; 2;�ZB�
ð9bÞ

and

cX ;3ðr; sÞ ¼ 0:5p1=2r�1E3½ð1� 0:5Z�1
B ÞErfðZ1=2B Þ

þ ðpZBÞ�1=2 expð�ZBÞ�; ð9cÞ

where ZB = r
2(bs + 1)�1. Models (9b) and (9c) have been

plotted in Fig. 4A and B, respectively, for selected values

of the parameter b. Physical insight can lead to further
extensions of the covariance class of Eq. (6) in the form
of cX(r,s) @ (bs)�mexp(�r2/as), which includes the cases
with m = 0 and m > 1.5 in R3 · T (the coefficients m, a
and b obtain physical meaning in the context of the tur-

bulence study considered). Moreover, a series of non-

separable spatiotemporal covariance models can be

derived from Eq. (6), such as

cX ðr; sÞ ¼ ð1þ bs2Þ�3=2½1� 0:5r2ð1þ bs2Þ�1�

 exp½�0:5r2=ð1þ bs2Þ� ð10aÞ

and

cX ðr; sÞ ¼ ð1þ bs2Þ�5=2f1� r2ð1þ bs2Þ�1

þ r4½8ð1þ bs2Þ2��1g exp½�0:5r2=ð1þ bs2Þ�:
ð10bÞ

Covariance models (10) in the R2 · T domain are plot-
ted in Fig. 4C and D for b = 2. Among the noticeable
Fig. 4. The top row shows plots of the non-separable covariance model of Eq

parameter b. In the bottom row, plots of the non-separable covariance model
b = 2.
features of these plots is the presence of ‘‘hole effects’’,

mainly, along the space direction.

It is worth mentioning that general pde can generate

new classes of permissible spatiotemporal covariance

functions based on other well-known functions. For

example, Christakos [8, p. 184] used the physical pde,
Ds,tZ(s, t) = X(s, t) in R2 · T, where s = (s1, s2) and
Ds;t ¼ �ao2=ot2 þ bðo4=os41 þ o4=os42Þ þ 2bo

4=os21os
2
2, to

derive new spatiotemporal covariances cZ(r,s) starting
from existing ones, cX(r,s), as follows

cZðr; sÞ ¼
Z Z

dkdw exp½iðk � rþ wsÞ�


 ðbk4 þ aw2Þ�2~cX ðk;wÞ; ð11Þ

where r = (r1, r2), k = (k1,k2), the a and b are positive
coefficients, and ~cX ðk; wÞ is the spectral density of
cX(r,s). For illustration, we let a = b = 1 and use a spec-
tral density of the form ~cX ðk;wÞ ¼ 2pdðw� k � vÞ
expð�a2k2=4Þ, where v is a known parameter vector that
represents a velocity vector (see, also, discussion in Sec-

tion 2.2 below). Then, assuming spatial isotropy, Eq.

(11) yields the following non-separable spatiotemporal

covariance model in R2 · T,

cZðr; sÞ ¼ 0:5a
Z 1

0

dk k�3ðk2 þ m2Þ�2


 expð�a2k2=4ÞJ 0½kðr þ msÞ�; ð12Þ
. (9b) (plot A) and of the model (9c) (plot B) for selected values of the

s of Eq. (10a) (plot C) and of Eq. (10b) (plot D) for the parameter value



Fig. 5. Plots of the non-separable covariance model of Eq. (12) in the R2 · T domain for a = 0.5 and various values of m.
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where v = ivi. Eq. (12) is calculated numerically leading
to the covariance plot of Fig. 5 (shown for certain com-
binations of the a and v values). In a similar vein, start-
ing from the physical pde LP½ZðpÞ� ¼ X ðpÞ in Rn · T,
whereLP ¼ ðo=otÞLS, spatiotemporal covariance mod-

els can be generated by means of the equation

cZðp; p0Þ ¼
Z Z

dudu0 cX ðu; u0Þgðp; uÞgðp0; u0Þ;

where g is the Green�s function, which is the solution of
LP½gðp; uÞ� ¼ dðp� uÞ. This process produces a versa-
tile class of non-separable covariance models, not plot-

ted in this work.

For certain applications, the long-range properties of

the covariance functions are important. There is a class

of covariance models with well-defined asymptotic

behavior, while their dependence close to the origin is

unspecified. For example, on the basis of the asymptotic

correlation function for the noisy Burgers pde [17], an
interesting non-separable covariance model cX(r,s) for
large r and s values in R1 · T is derived as follows [9,
p. 226],

cX ðr; sÞ ffi A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz�2as�1

p
expð�r�zsÞ; ð13Þ

where A ¼ expðD=4Þ=4
ffiffiffiffiffiffiffiffi
pD3

p
, and a, z, D > 0. The sym-

bol ‘‘@’’ denotes that the covariance function is of this
functional form for finite lags and asymptotically but

not close to the origin. The shapes and the correlation
ranges of model (13) depend on the parameters a and
z. The magnitude of the slope increases with the ratio

a/z.

2.2. Covariance models generated from spectral densities

A spectral method for generating covariance (and

variogram) models of random fields was proposed in
Christakos [4, p. 263–264]. One first constructs a suita-

ble function in the wave-frequency domain (e.g., a spec-

tral density) and then derives the covariance model in

real space–time by applying an inverse transformation

(Fourier or Hankel). This powerful method has been

used extensively in the context of spatial as well as spa-
tiotemporal analysis. A set of covariances associated

with homogeneous/stationary random fields were de-
rived by [25, p. 293–294] which have the spectral density
~cX ðk; xÞ ¼ ½ðk2 þ a2Þ2p þ c2x2��1, where p > n/2. The

corresponding covariance model in Rn · T is as follows

cX ðr; sÞ ¼ bnr
1�n=2

Z 1

0

dk kn=2 exp½�c�1ðk2 þ a2Þps�


 ðk2 þ a2Þ�pJn=2�1ðkrÞ; ð14Þ

where bn = [2(2p)
n/2c]�1 and Jn/2�1 denotes the Bessel

function of the 1st kind and order (n/2 � 1). We used
numerical integration to calculate Eq. (14) for

p = n = 2, which led to the covariance models in

R2 · T plotted in Fig. 6. In these plots the behavior of
model (14) is examined for varying values of the para-

meters a and c. The covariance declines faster along
the time direction than along the space direction.

In light of the space transformation analysis, another

class of covariance models is generated by assuming a

covariance given by Eq. (14) for n = 1 and then trans-

forming it in higher dimensions by means of Eq. (1).

This leads to the following double integral

cX ;nðr; sÞ ¼ Enbn

Z 1

0

Z 1

0

dudkð1� u2Þðn�1Þ=2ðurkÞ1=2


 exp½�c�1ðk2 þ a2Þps�ðk2 þ a2Þ�pJ�1=2ðkurÞ;
ð15Þ

where r, s > 0. In Fig. 6 we display examples of model
(15) for n = 3, c = 1, 2, and a = 0.7, 1.
Christakos [8, p. 185;9, p. 226–227] proposed a simple

yet general d-technique for constructing a rich class of
non-separable spatiotemporal covariance models in

Rn · T, as follows. Assume a spectral density function
in Rn, say ~cSðkÞ, and let the corresponding density in
Rn · T be ~cX ðk;xÞ ¼ 2pdðx � k � vÞ~cSðkÞ. Then, one
can generate space–time covariance models as follows

cX ðr; sÞ ¼ ð1=2pÞn
Z
dk exp½iðk � rþ vsÞ�~cSðkÞ: ð16Þ

Note that if ~cSðkÞ is an isotropic spectral density, the
frequency integral in Eq. (16) is simplified to an one-



Fig. 6. Plots of the non-separable covariance models of Eq. (14) in the R2 · T domain (top row) and of the model (15) in the R3 · T domain (bottom
row) for varying values of the parameters a and c.
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dimensional integral over the magnitude of the fre-

quency vector, which involves a Bessel function. The

resulting one-dimensional integral is evaluated either

explicitly or by numerical integration. If ~cSðkÞ has an in-
verse transform in Rn, say cX(r), then Eq. (16) reduces to
cX(r,s) = cs(r ± vs), which implies that one can start with
any of the covariance models cX(r) that are already
available in the spatial statistics literature and simply
use the equation above to obtain a permissible space–

time covariance model. In this way, a variety of spatio-

temporal covariance models can be generated from the

corresponding purely spatial ones. A few examples are

plotted next. In particular, consider the following spa-

tiotemporal covariance models in Rn · T

cX ðr; sÞ ¼ exp½�kr� vsk=a�; ð17Þ
and

cX ðr; sÞ ¼ exp½�ðr� vsÞ2=a2�: ð18Þ
These two models (17) and (18) are plotted in Fig. 7A

and B, respectively (in the case of r + vs and for selected
combinations of a- and m-values). Furthermore, starting
from the spatial covariance model cX(r) = (1 + r

2/w2)�m/2

exp(�r/n) proposed by ([22] page 46), we obtained the
following spatiotemporal model

cX ðr; sÞ ¼ ½1þ ðr� vsÞ2=w2��m=2
exp½�kr� vsk=n�: ð19Þ

The model (19) is shown in Fig. 7C and D (for a positive

sign of the space–time vector, r + vs), and for various
combinations of the parameters m, w and n. Other spa-
tiotemporal covariance models can be generated in a

similar manner as Eqs. (17)–(19) above. Models of this

kind can be useful in several physical applications,

e.g., in cases in which the ‘‘frozen’’ random field hypoth-

esis applies [32].

Another example of the spectral class is the following

covariance model, which has been used in several appli-
cations in the R1 · T-domain (e.g., [8, p. 186],

cX ðr; sÞ ¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=a2 þ s2=b2

q� �
; ð20Þ

where a, b > 0 are coefficients corresponding to the spa-

tial and temporal correlation scales. This model, which

represents a homogeneous/stationary random field, is

plotted in the upper half of Fig. 8. The behavior of

model (20) in R1 · T for small variations in the values
of a and b is depicted in plots A and B of Fig. 8. It is

worth noticing that, in view of the space transformation
analysis of Eq. (2), the model (20) is permissible inRn · T
(n = 2,3). Furthermore, using the space transformation

approach of Eq. (1), novel spatiotemporal covariance

models are obtained in Rn · T by means of the integral

cX ;nðr; sÞ ¼ En

Z 1

0

duð1� u2Þðn�1Þ=2


 exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ður=aÞ2 þ ðs=bÞ2

q� �
: ð21Þ



Fig. 7. Instances of the non-separable covariance models of Eq. (17) for a = 0.5, m = 0.5 (plot A), the model of Eq. (18) for a = 0.8, m = 0.5 (plot B),
and the model of Eq. (19) in Rn · T (n = 1,2,3) shown in plot C for the parameter set m = 1.5, w = 0.25, n = 0.5, and in plot D for the parameter set
m = 1.5, w = 0.25, n = 2.

Fig. 8. Plots of the non-separable covariance model of Eq. (20) in the R1 · T domain (plots A and B), and of the model in Eq. (21) in the R3 · T
domain (plots C and D) for selected values of the parameters a and b.
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The corresponding functions are plotted in Fig. 8 (plots

C and D).

2.3. Covariance models generated from dynamic rules

Another class of S/TRF is generated from growth and
pattern formation processes in which there is a random

element (e.g., a porous medium) and the spatiotemporal

evolution is governed by a set of dynamic rules instead

of a differential equation. A non-separable covariance

model of this type that originates from simulations of

invasion percolation satisfies the dynamic scaling form

cX(r,s) @ r�1g(rz/s), where z and g(x) are suitable coeffi-
cient and function (for details, see [12, p. 113–114]). In
this work we consider the case of

cX ðr; sÞ ¼
raz�1=sa; if rzs�1 � 1;

sb=rbzþ1; if rzs�1 � 1

�
ð22Þ

in R2 · T. A noticeable feature of Eq. (22) is that, under
certain conditions, it can generate covariance models

with ridges across space and time. Models with ridges

along space or time have been discussed by Stein [35].

Fractal models exhibit a power-law asymptotic decay

of the correlations with a non-integer exponent. The

models can be fractal either in space (in which case the
asymptotic behavior refers to r!1) or in time (in
which case the asymptotic behavior refers to s!1).
The following class of spatiotemporal covariance mod-

els in Rn · T has fractal properties over a corresponding
space–time range
Fig. 9. Plots of the non-separable covariance model of Eq. (23) in the Rn · T
A: z = �0.845, a = �0.454, b = �0.35. In plot B: z = �0.385, a = �0.615, b =
cX ðr; sÞ ¼ r2f̂ zðs=rb; ucÞf̂ aðr;wcÞ; ð23Þ
where f̂ mðr; ucÞ ¼ fmðr; ucÞf �1

m ð0; ucÞ and fmðr; ucÞ ¼
C�1ð�mÞ

R uc
0
du expð�urÞu�ðmþ1Þ. As is shown in [14], the

function f̂ zðs=rb; ucÞ has an unusual dependence on the
space and time lags through s/rb. For large s and r, s/
rb!0 and f̂ zðs=rb; ucÞ ! 1. With regard to

f̂ zðs=rb; ucÞ, two pairs of spatiotemporal points are
‘‘equidistant’’ if s1=r

b
1 ¼ s2=r

b
2 (in contrast with, e.g., a

Gaussian spatiotemporal covariance function where

equidistant lags satisfy the equation r2=n2r þ s2=n2s ¼ c).
Permissibility conditions for the model (23) imply that

�1 < z < 0 and �(n + 1)/2 < a � bz < 0 in Rn. These

conditions can be relaxed by cutting off the short- and

long-range behavior of the model, using the methods

in [23]. A numerical illustration of the covariance model
(23) in Rn · T is plotted in Fig. 9 for several values of the
parameters z, b and a (note that a range of z- and b-val-
ues is assumed and the a is derived on the basis of the
permissibility conditions above).

2.4. Covariance models obtained from generalized random

field theory

Generalized spatiotemporal covariances, denoted as

jX(r,s), are often defined on the basis of the S/TRF the-
ory of continuity orders m in space and l in time (S/
TRF-m/l; [7, p. 861–875;8, p. 196–214]). Generalized
covariances are associated with non-homogeneous/

non-stationary data. Just as in the case of ordinary
domain for selected combinations of the parameters z, a, and b. In plot
�0.35. In plot C: z = �0.615, a = �1.396, b = 1.05.
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covariances, generalized covariances can be derived

from physical pde. Christakos and Hristopulos [12, p.

160–163] discuss certain illustrative examples. In one

case, the corresponding equation of generalized covari-

ances jX(r,s) of the S/TRF-m/l, X(s, t), is as follows

ð�1Þmþlðr2Þmþ1 o2lþ2

os2lþ2
jX ðr; sÞ ¼ cY ðr; sÞ; ð24Þ

where r2 ¼
Pn

i¼1o
2=or2i and cY is the ordinary centered

covariance of a homogeneous/stationary field Y(s, t)
linked to the non-homogeneous/non-stationary field

X(s, t), through the physical pde.
A class of generalized covariance models which are

solutions to Eq. (24) are of the following separable type

jX ðr; sÞ ¼ ½G1ðrÞ þ p2mþ1ðrÞ�½G2ðsÞ þ p2lþ1ðsÞ�; ð25Þ

where the spatial and temporal kernels G1(r) and G2(s)
are Green�s functions in Rn defined as

G1ðrÞ ¼
r2m log r=½22mþ1pðm!Þ2�; n ¼ 2;
r2m�1ð�1Þmþ1Cð1=2� mÞ=ð22mþ2p3=2m!Þ; n ¼ 3

(

and

G2ðsÞ ¼ ð�1Þls2lþ1#ðsÞ=ð2l þ 1Þ!:
Both the spatial m and temporal l orders take the values
0, 1 or 2, in this case; J(s) is the step function, i.e.,
J(s) = 1 if the temporal lag is s > 0 and J(s) = 0 other-
wise. The spatial and temporal polynomials are, respec-

tively, p2mþ1ðrÞ ¼
Pm

q¼0ð�1Þ
qaqr2qþ1 and p2lþ1ðsÞ ¼Pl

f¼0ð�1Þ
fbfs2fþ1. Depending on the orders m and l, cer-

tain permissibility conditions apply on the coefficients aq

and bf (Table 1). Depending on the spatial dimension

(R2 vs. R3) the coefficients ci and di (i = 0,1,2,3) in Table

1 may assume different values as shown in Table 2. For

illustration, the plots in Fig. 10 offer a comparative vis-

ualization of the generalized covariance model (25) in

R3 · T for different combinations of the orders m and l
(=0, 1 and 2).
Table 1

Permissibility conditions for the coefficients aq and bf

m, l aq bf

0 a0 P 0 b0 P 0

1 a0, a1 P 0 b0, b1 P 0

2 a0, a2 P 0 b0, b2 P 0

a1 P 2
c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0a2c0c2

p
b1 P 2

d1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0b2d0d2

p

Table 2

Values of the coefficients ci and di

R2 R3

c0, d0 2p 8p
c1, d1 18p 96p
c2, d2 450p 2880p
c3, d3 22050p 161280p
A noticeable class of non-separable generalized

covariances for non-homogeneous/non-stationary data

is as follows

jX ðr; sÞ ¼ a0dðrÞdðsÞ þ dðrÞ
Xl

f¼0
afð�1Þfþ1s2fþ1

þ dðsÞ
Xm

q¼0
bqð�1Þqþ1r2qþ1

þ
Xm

q¼0

Xl

f¼0
dq=fð�1Þqþfr2qþ1s2fþ1

þ dn;2r2m log r
Xl

f¼0
ð�1Þfcfs

2fþ1; ð26Þ

where d(r) and d(s) are spatial and temporal delta func-
tions, respectively; dn,2 is Kronecker�s delta; and a0, af,

bq cf, dq/f are suitable coefficients. The first three terms

in Eq. (26) represent discontinuities at the space–time
origin; the fourth term is purely polynomial; the fifth

term, which is logarithmic in the space lag, is obtained

only in R2 · T. A representation of the general model
(26) is plotted in Fig. 11, where we assumed that

a0 = af = bq = cf = 0, d0/0 = d2/1 = 1/4, d0/1 = 1/16, d1/0 =

1/2, d1/1 = 1/8, and d2/0 = 1. Model (26) is useful for nat-

ural processes that have white noise residuals, Y(s, t),
but due to its simplicity it has been widely used in ap-
plied stochastics and modern spatiotemporal geostatis-

tics. However, the assumption of white noise residual

is restrictive, since more flexible models can be obtained

using residuals with finite range correlations.

The power of the generalized S/TRF theory is dem-

onstrated, among other things, by the fact that many

useful models, like fractals and wavelets, are special

cases of the generalized S/TRF theory (see [9, p. 251–
259]). Furthermore, note that after the generalized

covariance models (25) and (26) are constructed, ordi-

nary non-homogeneous/non-stationary covariance mod-

els can be derived by means of the relationship

cX ðs; t; s0; t0Þ ¼ jX ðr; sÞ þ pm=lðs; t; s0; t0Þ; ð27Þ

where pm/l(s, t;s
0, t 0) are suitable space–time polynomials.

In light of Eq. (27), even if one starts with a separable

generalized function, like Eq. (25), the resulting ordinary

covariance (27) is non-separable. Hence, equation (27)

offers the means for generating a large class of poten-

tially useful non-separable spatiotemporal covariance
models, which can be used to represent spatially non-

homogeneous/temporally non-stationary environmental

processes and systems.

2.5. Covariance models constructed by linear

superposition

It is well known that linear combinations of simple
covariance models, cx, i, are also valid covariance models



Fig. 10. Comparative plots of the generalized covariance model (25) in R3 · T for pair values of the spatial and temporal continuity orders m and l,
respectively.
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cX ðr; sÞ ¼
XN
j¼1

kjcX ;jðr; sÞ; ð28Þ

with weights kj P 0. The new covariance model cX
shares some of the features of the component models
cX, j (j = 1, . . . ,N). However, the cX can be a non-sepa-
rable covariance model even if the components cX, j
are separable space–time models. The simple but power-

ful statement of Eq. (28) is that we can combine the
models discussed in the previous sections to produce



Fig. 11. Plot of a non-separable generalized covariance in the R2 · T domain based on model (26).

Fig. 12. Plots of non-separable covariances in the R2 · T domain based on various linear combinations using models (4), (12), and (17).
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new covariance models in space and time. For illustra-

tion, in Fig. 12 we plot covariance models of the form

(28), where N = 3 and the component models cX, j
(j = 1,2,3) are given by Eqs. (4), (12) and (17), respec-

tively; various weight combinations kj (j = 1,2,3) are
considered. Depending on the weights kj one can en-
hance or reduce the effect of the component models on

the final covariance model (28). Indeed, in Fig. 12, the
k2-value has been taken small enough compared to the
k1- and k3-values in order to suppress the slow drop
effect of cX,2-component. In particular, cX,A is a combi-

nation of the weights (k1,k2,k3) = (0.8,0.1,0.1), empha-
sizing the influence of model cx,1; the neighboring plot

of cX,B is created using (k1,k2,k3) = (0.1,0.1,0.8), in
which case the main contribution comes from the cX,3-

component.
3. Discussion

The variability of environmental processes is cap-

tured by the mean trend, which usually models ‘‘slow’’

variations of the process in space and time, and the (cen-

tered) covariance function, which incorporates ‘‘fast’’

variations of a seemingly random nature. The mean

trend is typically determined from the equations of the
physical laws that govern the process. If two fields are

related by means of an equation (i.e., a pde) the fluctu-

ations of the dependent field are related to the fluctua-

tions of the independent field, and so are the

respective covariance functions. The most straightfor-

ward example from stochastic hydrology is the problem

of groundwater flow, in which the hydraulic head covar-

iance is determined from the hydraulic conductivity
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covariance by means of the flow equations (i.e., Darcy�s
law and the continuity equation). Similar situations arise

in space–time phenomena, in which the dynamic evolu-

tion of the process is typically governed by a set of pde

or by means of dynamic ‘‘evolution’’ rules that are not

amenable to a pde description.
In this work, rich classes of non-separable spatiotem-

poral covariance models are investigated for homogene-

ous/stationary as well as non-homogeneous/

non-stationary data. These models cover a wide range

of space–time correlation scenarios, which can be used

to represent the variability of natural systems in space

and time. We consider various methods for generating

non-separable spatiotemporal covariance functions that
include physical differential equations, spectral densities,

dynamic rules, generalized random field theory, and lin-

ear superposition of permissible covariance functions.

We have also discussed the use of scaling forms, which

involve power-law combinations of space and time lags,

and we have commented on the need for truncating the

power-law models at short and long range, in order to

obtain permissible covariance functions. As is shown
in the space–time plots of the covariance models above,

the different scenarios lead to distinct features. Hence,

the visual representation of the covariance models is

very helpful in selecting the appropriate model for the

specific physical situation. The covariance models pre-

sented here are based on general and powerful compos-

ite space–time random field theories, which deserve

further attention by the communities engaged in spatio-
temporal statistics research.
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Appendix I. We define the Fourier transform (FT) of

the covariance function cX, n(r,s), i.e., the covariance
spectral density, by means of the following integral in

the Rn · T domain (n = 1,2,3)

~cX ;nðk;xÞ ¼
Z Z

drdse�iðkrþxsÞcX ;nðr; sÞ: ðA:1Þ

Then, the inverse Fourier transform determines the
covariance function from the spectral density of the

covariance as follows

cX ;nðr; sÞ ¼ ð2pÞ�n�1
Z Z

dkdxeiðkrþxsÞ~cX ;nðk;xÞ:
ðA:2Þ
II. The complementary error function is defined as

ErfcðxÞ ¼ ð2=
ffiffiffi
p

p
Þ
R1
x dv expð�v2Þ; if xP 0;

2� Erfcð�xÞ; if x < 0:

�
ðA:3Þ

III. The KummerM(a,b,z) function is a solution to

the Kummer�s differential equation

z
d2w
dz2

þ ðb� zÞ dw
dz

� aw ¼ 0 [1, Chapter 13]: ðA:4Þ

The KummerM function can be written in the power

series form

KummerMða; b; zÞ ¼ 1þ az
b
þ � � � þ ðaÞnzn

ðbÞnn!
þ � � � ; ðA:5Þ

where (a)n = a(a + 1)� � �(a + n � 1) with (a)0 = 1.
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