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An Application of the Holistochastic Human Exposure
Methodology to Naturally Occurring Arsenic
in Bangladesh Drinking Water

M. L. Serre,'™ A. Kolovos,! G. Christakos,! and K. Modis®

1. INTRODUCTION

Arsenic (As) is a known toxic and carcinogenic

The occurrence of arsenic in drinking water is an issue of considerable interest. In the case
of Bangladesh, arsenic concentrations have been closely monitored since the early 1990s
through an extensive sampling network. The focus of the present work is methodological. In
particular, we propose the application of a holistochastic framework of human exposure to
study lifetime population damage due to arsenic exposure across Bangladesh. The Bayesian
Maximum Entropy theory is an important component of this framework, which possesses
solid theoretical foundations and offers powerful tools to assimilate a variety of knowledge
bases (physical, epidemiologic, toxicokinetic, demographic, etc.) and uncertainty sources (soft
data, measurement errors, etc.). The holistochastic exposure approach leads to physically
meaningful and informative spatial maps of arsenic distribution in Bangladesh drinking water.
Global indicators of the adverse health effects on the population are generated, and valuable
insight is gained by blending information from different scientific disciplines. The numerical
results indicate an increased lifetime bladder cancer probability for the Bangladesh population
due to arsenic. The health effect estimates obtained and the associated uncertainty assessments
are valuable tools for a broad spectrum of end-users.
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in sufficient quantity in drinking water, it can pose a
threat for public health. Long-term exposure to As via

substance that can be found in groundwater in re-
duced (Asyp) and oxidized (Asy) forms. This can be
the result of human-induced pollution (e.g., Cherry
Point, NC“)), or anatural event, as is the case of Asin
Bangladesh where the As contained in the sediments
dissolves in water aquifers.®) If dissolved or desorbed
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drinking water is known to cause skin, lung, bladder,
and kidney cancers, as well as skin lesions, namely,
pigmentation changes and hyperkeratosis.®

As distributions in space and time and the con-
sequent health effects due to human exposure to
the contaminant have been at the epicenter of inter-
est in various studies.('+> The development of the
Bayesian Maximum Entropy theory (BME)(©® has of-
fered a set of powerful techniques for a holistochas-
tic human exposure analysis across space-time. The
term “holistochastic” was coined by Christakos and
Hristopulos(” to refer to a modeling framework that
accounts for both the holistic and the stochastic fea-
tures of the human exposure situation. The holistic
component expresses the multidisciplinary nature of
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human exposure such that the whole is greater than
the sum of its parts; the stochastic component, on the
other hand, emphasizes the importance of uncertainty
characterization. The BME theory allows meaningful
spatiotemporal inferences to be drawn and exposure
maps to be produced based on a sound logical system
that assimilates a wealth of knowledge bases (KB),
many of which were previously unaccounted for in
human exposure studies. These KB include physical
and biological laws, toxicokinetic principles, empiri-
cal relations, multiple-point and nonlinear statistics,
as well as uncertain data available in the form of
soft information. The BME viewpoint offers valuable
tools in a variety of environmental health science ap-
plications. In this work, we apply BME to study the
spatial distribution of high As concentrations in the
Bangladesh drinking water and assess the resulting
population health damages.

The presence of As in Bangladesh groundwa-
ter has gained considerable attention during the last
years,®? mainly since the British Geological Sur-
vey (BGS) started monitoring the problem in the
1990s. In particular, during 1998-1999, BGS gath-
ered samples from 3,534 wells throughout Bangladesh
by means of local and national surveys (see
the BGS Bangladesh website http://www.bgs.ac.uk/
arsenic/Bangladesh.html). The data sets mainly focus
on shallow aquifers (i.e., depths smaller than 200 m).
Deeper aquifers have been found to be almost As-
free, and according to the final report there is no rea-
son to believe that they will become seriously contam-
inated.’). The World Health Organization (WHO)
standards for As concentration in drinking water in-
clude a maximum of 10 ng/L. However, even with the
significantly looser Bangladesh standard of 50 ug/L,
contaminant concentrations were found to exceed the
acceptable limits in many sampling locations.

About 4,000 tubewell and borehole samples from
four different surveys comprise the data volume of
the Bangladesh study.??) These samples provided a
total of 3,373 As concentration measurements (after
excluding the ones from deep aquifers). The spatial
distribution of the samples is rather uniform. There
also appears to be some short-term temporal vari-
ation in As concentration in the scale of weeks or
less, possibly due to changes in water-flow patterns
and strong stratification of water quality within the
same aquifer. Furthermore, an intense spatial nonho-
mogeneity of As concentrations has been observed,
resulting in samples that greatly vary even when lo-
cated a few meters apart. This effect has been local
in some areas, whereas in other areas the variation is
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smoother. The situation is attributed to the nature of
the underlying sediments where As is found.

In the majority of the collected BGS samples,
the As concentration was measured using a typi-
cal method (atomic fluorescence spectrometry with
HG-AFS hybrid generation) at the BGS laboratories.
These values are considered free of significant mea-
surement errors. However, some As measurements
have been reported to lie between 0 ng/L and some
given threshold value (equal to either 6 or 30 ug/L, de-
pending on the BGS sample considered). Moreover,
a significant number of measurements were below the
detectionlimit of 1 ug/L. These sorts of measurements
contain a higher degree of uncertainty and constitute
prime examples of soft data. Naturally, single-value
measurements may also range within some narrow
limits (depending on the instrumentation accuracy),
but this level of uncertainty is negligible compared
to that of soft data. In view of the above consider-
ations, accounting for soft information is a crucial
matter because of the technical difficulties in mea-
suring accurately low As levels in water samples, and
so forth. Nevertheless, soft data is very valuable be-
cause it can improve exposure estimates that would
have been otherwise obtained with less information
at hand (e.g., using only single-valued hard data). In-
deed, as has been noticed in the relevant literature,
the uncertain knowledge obtained about important
exposure parameters could be more valuable than the
certain knowledge obtained about less important pa-
rameters.(®) Handling soft data requires a scientifically
different treatment than hard data because of the soft
data form and uncertainty expression, for example,
some soft data available in the present study are in
the form of interval data (i.e., it is assumed that all
values in an interval have the same probability of oc-
currence). The BME techniques of space-time expo-
sure mapping possess some unique features capable
of integrating and processing a variety of knowledge
bases (including hard and soft data) in a scientifically
meaningful and mathematically rigorous manner. In
the following section we briefly describe some basic
features of BME and place it within the general frame-
work of holistochastic human exposure and popula-
tion health effect considered in this work.

2. THE HOLISTOCHASTIC HUMAN
EXPOSURE FRAMEWORK
2.1. The Spatiotemporal BME Mapping Method

The As data set is characterized by considerable
natural variability in space-time, as well as by varying
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levels of uncertainty in the measured values (records
contaminated with measurement noise, values below
detection limits, etc.). In such situations it is useful
to adopt a stochastic representation of the As distri-
bution across space-time in terms of the random field
model, X (p), where the vector p = (s, t) defines a point
in the space-time domain (s = (s, s5») is the spatial
location vector with coordinates s and s,, and ¢ de-
notes time).(®) The uncertainty of the As distribution
manifests itself as an ensemble of realizations {x } of
the possible X (p) values. To each of these realizations
the S/TRF assigns a probability depending on p. BME
considers all available KB and using the provisions of
the underlying theory it generates informative prob-
ability distributions of As concentrations at unsam-
pled locations. This is achieved through an epistemic
process that distinguishes between three main BME
stages.©

1. At the first (structural) stage, the general
KB (briefly denoted as G-KB) describes the
structural characteristics of the X(p) field.
The ¢-KB includes theoretical and empiri-
cal expressions of these characteristics. For
example, G-KB may include the mean trend
my(p) = X(p) (the bar denotes stochastic
expectation), which characterizes systematic
spatiotemporal As patterns in the Bangladesh
groundwater. Often, space-time dependen-
cies between As values are expressed for sets
of points considered simultaneously. The ¢-
KB includes multiple-point statistics across
space and time. For example, a two-point
statistic is the covariance function c,(p, p’) =
[X(p) — m(P)I[X(p) — mu(p)], which ex-
presses spatiotemporal correlation between
points p and p’. As a result of accounting for
G-KB, the relevant probabilities of the As val-
ues are assigned to each point p. The out-
come is a map of probability density func-
tions (PDF) that quantifies the distribution
of these probabilities. The structural PDF is
defined by

fo(x; p)dx = Prob[x < X(p) < x +dx];
(1)

where the subscript “G” denotes that the gen-
eral KB available regarding the As distribu-
tion has been used to construct the PDF in
Equation (1).

2. At the second (specificatory) stage, BME
makes an assessment of the monitoring data
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Xdata Obtained at a specific set of sampling
points p; (i = 1,...,m). The Xxdaa Set con-
stitutes the so-called specificatory (or site-
SpeCiﬁC) KB (S'KB) The Xdata = (Xhard’ Xsoft)
consists of the hard data xpa.q (exact As mea-
surements) and the soft data xsof at sampling
points where As could not be measured ac-
curately. Soft data may consist of intervals
(e.g., below-detect measurements indicating
As concentrations between 0 and the detec-
tion limit of the measuring device); or they
may involve probabilistic descriptions of the
measured values (as provided by devices with
calibrated measurement errors). BME is the
only method that can incorporate all types
of information conveyed by soft data (as op-
posed, e.g., to considering merely the middle
point of a soft interval datum as a hard datum
and ignoring the interval range and the asso-
ciated uncertainty) and, thus, it can provide
higher quality estimates.

3. At the final (integration) stage BME blends
the total KB, ¥ = ¢ U S, described above
and produces an updated (integration or pos-
terior) PDF, fx(x«), at each mapping point
Pk Then, estimates g, of the As field x, at
any point p; can be derived from fx(x«).
The fx(x ) provides a complete stochastic de-
scription of the As distribution that accounts
for the total knowledge % available. To pro-
duce spatiotemporal exposure maps, a variety
of estimators can be derived at the integration
stage using fi. The choice depends on the in-
tended use, e.g., if the most probable estimate
is sought for at each location py, the estimator
of choice will be the mode (BM Emode) of the
distribution f;. In this work we used the me-
dian of fx (BMEmedian) to obtain the map of
the As distribution over Bangladesh. In addi-
tion, the estimation standard deviation at py
was chosen as a measure to characterize the
corresponding mapping uncertainty.

The different processing stages of BME mapping
are outlined in Fig. 1. At the structural stage, the
G-KB is processed and the structural (or prior) PDF
f¢ representing the general characteristics of sub-
surface As are calculated in the proper space-time
continuum. At the specificatory stage, the 5-KB is con-
sidered and transformed into appropriate operators
E.() For example, in the case of interval soft data the
Egis such that d B¢ = dx;soft, Whereas for probabilistic



518

' |
Specificatory Stage : Integration Stage :
|

Structural Stage Interpretive Stage

Fx

|

General KB
G

Site-specific KB
N

Bayesian

1
i

Condition- 1w ! '

alization " BME estimate

BME confidence
interval

Fig. 1. The BME-based knowledge assimilation and processing
stages.

data dE5 = fg(dXxsoft)dXsoft- The S-KB is properly
assimilated at the integration stage, thus resulting in
the posterior PDF, fi,. BME theory involves elaborate
numerical computations to obtain fj at a set of esti-
mation locations py, which are carried out using the
BMEIib.1)

2.2. The Stages of the Holistochastic Approach

In this work we employ a comprehensive spa-
tiotemporal holistochastic framework of human ex-
posure due to high As concentrations in Bangladesh
drinking water. The framework is summarized in
Fig. 2. In the previous section we examined the BME

Monitoring Information { 6.8} 1—
Spatiotemporal Monitoring Measurement
Variability Data Errors
- E— S/T BME
(G.8)—> X(s.2)
| Exposure Mapping X(s.1) |
Epidemiological Relation H=g(X) > '
X(s,t)— H(s,1)
| Individual Risk Mapping H(s,t) |
-t Population Health Relation L=g (H) -
H(s 5~ L(s.t) :

Y

| Population Health Impact Mapping L(s,t) |

'

| Total Health Impact Assessment N l—bl Uncertainty Quantification

Fig. 2. A comprehensive holistochastic framework for human ex-
posure and health risk assessment across space and time.
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method, which is part of this framework and provides
valuable information regarding the contaminant dis-
tribution across space and time based on the available
KB. Each stage of the holistochastic framework pro-
duces maps that allow a better assessment of As health
risk and its impact at the population level, thus pro-
viding useful information for health policy planning,
administration, and financial management. In brief,
the holistochastic framework consists of the follow-
ing stages.

1. Generate exposure maps via the BME ap-
proach by assimilating all relevant physical
KB (Fig. 1).

2. Integrate epidemiologic KB about As adverse
health effects to describe the expected health
risk across space and time.

3. Account for demographics and population dy-
namics to obtain maps of the distribution of
the population health damage (or loss). These
maps are readily used to assess the global
health impact of As exposure in Bangladesh.

This holistochastic approach also accounts for an
important aspect of risk assessment, which is to prop-
erly quantify the uncertainties involved in each stage
above.

The population of Bangladesh is exposed to As
in drinking water coming from shallow aquifers. Due
to the lack of comprehensive water-treatment facili-
ties, we can reasonably assume that the As concen-
tration field X(p) adequately represents the actual
drinking water As exposure. At the Stage 1 above, the
BME mapping method rigorously incorporates and
processes the physical G- and 5-KB available about
As. This results in maps of the As exposure distribu-
tion X (p), that is:

{G. 8} — X(p) (2)

The estimated exposure field in Equation (2) is de-
scribed at any point p; of the mapping grid by the
BME posterior PDF fi(x ), which offers a complete
stochastic description of the associated uncertainty.
This uncertainty is owed to the natural spatial vari-
ability of As and the measurement errors of the avail-
able data. The BME method leads to more accurate
maps than those obtained by classical methods, as has
been previously demonstrated in similar situations
involving soft data.(1%-11)

In Stage 2, we focus on the health risk posed
by the As exposure in drinking water from shallow
wells. Normally, this task is undertaken using tox-
icokinetic (or pollutokinetic) models that evaluate
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the contaminant burden on target organs, as well as
models providing burden-health response relation-
ships (see the approach proposed by Christakos and
Hristopulos(”)). However, currently there exists insuf-
ficient knowledge of the As mode of action, and the
main information sources are epidemiologic or toxi-
cologic exposure-health response studies.(!?) On the
basis of these studies, empirical models of the form
H = gy (X) can be constructed describing the stochas-
tic relationship between As exposure, X (p), and the
resulting health risk, H(p), across space and time,
that is:

X(p) Y H(p) 3)

The health risk H(p) employed in this work is the life-
time probability that an individual at a certain point
p = (s, t) will develop the specified health outcome
(e.g., lifetime incidence of bladder cancer resulting
from chronic exposure to As in drinking water). The
uncertainty in the estimated health risk H(p) is the
combination of exposure X (p) mapping uncertainty
with uncertainty in the empirical model gg(-).

In Stage 3, we integrate population information
(demographics, population dynamics and migration,
water consumption habits, etc.) to study the popula-
tion health impact resulting from As exposure. In this
case, the population health impact is considered to be
the damage (orloss) L(p) on the population due to the
health risk H(p). We also focus on L 4,(p), which is the
population health damage taken as the incidence den-
sity of the lifetime health outcome attributed purely
to As (e.g., the increase in the number of people per
km? who will develop lifetime bladder cancer due to
As exposure). The relationship L = g7 (H) describing
the population loss due to health risk is a function of
population density, and it may also account for other
population characteristics (such as daily range of dis-
placement or water consumption habits). Once the
relationship gz(-) has been established, we infer the
distribution of population health damage as follows:

H(p) &Y L(p). (4)

The uncertainty of the H(p) distribution is trans-
ferred, through model g, (-) to the relevant uncer-
tainty of the L(p) distribution.

3. NUMERICAL RESULTS
3.1. Arsenic Exposure Mapping

At Stage 1 of the holistochastic analysis we are
interested in assessing the As exposure on the popu-
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lation through drinking water. We consider the BGS
data set of As concentration measurements at shal-
low aquifers described above. The data were collected
within a two-year interval, which was too small to
detect significant temporal trends. Therefore, we as-
sumed that the As concentration at any given spatial
location is not varying with time. This is a reason-
able assumption since naturally occurring As—which
is the case of Bangladesh—does not display consid-
erable temporal fluctuations at time frames of such
small magnitude. Hence, herein we focus on a purely
spatial analysis where the point vector p of Equations
(1)—(4) now corresponds to the spatial location (time
is fixed).

According to the BME method, the As esti-
mates at unsampled locations are obtained from the
available KB following an exploratory analysis. The
spatial estimation process operates on de-trended
data; therefore, exploratory analysis removes any
data trends and identifies the underlying correlation
structure by means of covariance models. The spa-
tial trends are restored after the estimation process
has been completed. In particular, the available data
are scanned for trend determination, the trend is re-
moved, and the de-trended As data roughly follow a
log-normal distribution (Fig. 3), that is, the logarith-
mic values of the data are normally distributed. We
choose to work with the normally distributed loga-
rithmic values, keeping in mind that the estimates will
eventually need to be back-transformed to the normal
space values. The next step in the exploratory analysis
is the investigation of the systematic dependencies in

Density scaled histograms of log-transformed data
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Fig. 3. Density scaled histograms of log-transformed data.
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the As data. A physically and statistically acceptable
covariance model is sought to describe the correlation
among the data. A theoretical covariance model suit-
able for spatial As fields involves a nested structure of
two exponential and one gaussian components. This
model is fitted to experimentally derived covariance
values for As log-concentrations, as shown in Fig. 4.
The covariance model is a function of the distance r
between any two spatial points as follows:

c(r) =crexp {—SL} + ¢ exp {—SL}
a ar

+c3 exp{—3 (;—3)2} ) (5)

where the sill values are ¢y = 3.194, ¢, = 0.29, and
c3 = 0.63, and the corresponding range values are
a; = 2 km, a; = 35 km, and a3 = 57 km. Equation
(5) accounts for the intense spatial variability of As
in Bangladesh as has been reported.(!¥) Moreover,
Equation (5) was tested for anisotropy by calculat-
ing covariances along the north-south and east-west
directions, in addition to the all-directional model of
Fig. 4. The results suggest a fairly isotropic spatial dis-
tribution of the Aslog-values so that Equation (5) isan
adequate model. The means and covariance models
constitute the G-KB of the Bangladesh As situation.

The available As data set includes mostly hard
data values (about two-thirds of the total number
of measurements) that have been analyzed at the
BGS laboratories. On the other hand, about one-
third of the values (1,240 out of 3,373) are uncer-

45 T

© Calculated covariance
— Covariance model

aF i

Covariance

I I I
120 140 160

Fig. 4. Modeled (solid line) and experimental covariances (circles
connected by dash-dotted line) of the As log-concentration field.
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tain data that are either below some value (reported
as being <6 ug/L or <30 ug/L) or below the mea-
suring limit of the sampling device. These data are
considered as soft interval data, where the interval
values range accordingly from 0O to the measuring
limit or the reported threshold. In BME terminology,
the hard and soft data values together constitute the
S5-KB of the current study. At the BME integration
(or posterior) stage, the structural PDF f, are con-
ditioned on the $-KB above to yield the integration
PDF f; atadense set of mapping locations throughout
Bangladesh. The BME calculations were performed
using the BMElIib software library,1” which gener-
ates fi throughout Bangladesh. As was mentioned in
a previous section, from these PDF a variety of spa-
tial As maps can be derived representing, for exam-
ple, estimation means (BM Emean), medians (BME-
medians), or modes (BMEmodes). Fig. 5 presents a
spatial map of As concentrations based on the BME-
median estimates, after the logarithmic values have
been back-transformed to the normal space and the
spatial trend has been restored. The figure shows iso-
concentration contours, that is, contour lines along
which the As concentrations remain constant. The
contours display concentrations in increments of
100 pg/ L. For illustration, the 10 ug/L and 50 ng/L
contours have been additionally plotted, which cor-
respond to the WHO and Bangladesh maximum

Back-transformed BME estimates (in ug/L) of log As concentration
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Fig. 5. Map of the BM Emedian estimates of the As concentrations
(in pg/L). The concentration contours of 10 pg/L (World Health
Organization standard) and 50 pg/L (Bangladesh standard) are
shown along with contours in increments of 100 pg/L.
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BME standard deviation of As concentration estimates (ug/L)
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Fig. 6. Map of BME standard deviation of the As concentrations
(in pug/L). At each location the displayed value is the standard
deviation from the corresponding BM Emedian estimate shown in
Fig. 5. Some darker spots that appear suggest the fast increase of
uncertainty from lower values to the level of the surrounding values
at clustered data locations.

allowed As concentration standards, respectively.
Note that according to the estimates mapped in Fig. 5,
there exist areas in Bangladesh where the As concen-
tration is in the neighborhood of 300 ug/L. In fact,
the maximum concentration value estimated for a sin-
gle location in Bangladesh tops at 508 ug/L. The fi
also provide measures of the uncertainty of these esti-
mates. Such an uncertainty measure is the estimation
standard deviation at each location, which is mapped
in Fig. 6. A different uncertainty measure will be dis-
cussed later in Section 3.2.2. These values provide a
range within which the estimates may vary at a partic-
ular location. The standard deviation is smaller closer
to data sampling locations and increases as one moves
further away from the measured samples. Overall, the
map in Fig. 6 provides a stochastic description of the
uncertainty associated with As concentrations in shal-
low wells due to the high spatial variability of As and
the detection limits of measurement instruments.

3.2. Health Risk Mapping of Bladder Cancer

In Stage 2 of the holistochastic human exposure
analysis we use a model-based approach to assess the
health risk resulting from chronic exposure to As in
the drinking water. We demonstrate the holistochas-
tic framework in terms of bladder cancer health risks,
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since there is sufficient evidence from studies in var-
ious countries that As is a possible causal factor of
bladder cancer.(!*) Although it is generally known that
this particular health outcome tends to occur among
the rather older ages of population, we make use
of the bladder cancer health effect for the following
reason. The proposed model-based approach makes
use of direct exposure-health response relationships,
which can be constructed on the basis of one’s expe-
rience with related epidemiologic or toxicologic stud-
ies. In the present case, an exposure-health response
curve on bladder cancer was directly available allow-
ing an instructive demonstration of the function and
strengths of the holistochastic approach. This demon-
stration can serve as a guide for performing similar
analyses in terms of other health outcomes.

Once ingested, inorganic As is rapidly absorbed
by the organism and distributed to human organs.
Next, a methylation process follows and approx-
imately 5-25% of inorganic As is excreted un-
methylated. This unmethylated portion, which passes
through the urinary tract and is briefly stored in
the bladder, is believed to be responsible for the
increased rates of bladder cancer seen in exposed
populations.® Currently, the main information on
As health models are epidemiologic and toxicologic
exposure-response studies. Interaction between sci-
entific disciplines can provide modelers with:

1. Purely statistical regression models.

2. Mechanistic carcinogenesis models describing
the potential As interference with background
DNA damage.

The models of Group 1 are typically built using the
lifetime probability data of epidemiologic studies for
cancers caused by As exposure. In the following we
examine one model from each category, namely, a lin-
ear exposure-response model derived from statistical
regression of epidemiologic data, and a nonlinear one
that is based on a more elaborate approach dealing
with the mechanisms that cause cancer.

3.2.1. A Linear Exposure-Response Model

We first consider a linear regression model cali-
brated to the epidemiologic data proposed by Morales
et al.1®) These experimental data are shown in Fig, 7
and suggestno clear trend in the dose-response behav-
ior. It is common that such measurements are fitted
using a linear model, according to which the lifetime
probability P[cancer] of developing bladder cancer is
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Fig. 7. Comparison of two models for the health effect H(p) (prob-
ability of lifetime bladder cancer) vs. As concentrations. The stars
are epidemiologic data from Morales et al.(!®) The dashed line
refers to the linear exposure-response model (see Equation (6)).
The other two lines refer to the multistage carcinogenesis model
with variable repair rate, see Equation (A1); specifically, the solid
line is the outcome of the model for an expected lifetime of 78 years
(corresponding to the Taiwanese population), and the dash-dotted
line shows the model response for a lifetime expectancy of 58 years,
as assumed for Bangladesh.

related to the As concentration X (p) as follows:
P[cancer; p] = Pg + k X(p), (6)

where X (p) expresses the As concentration (in pg/L)
in the drinking water that people are exposed to, and
k is a linear slope constant. Note that in this particu-
lar model there is an underlying background bladder
cancer probability of P = 0.005 not depending on
As as a causing factor. The k value obtained by fitting
Equation (6) to the Morales et al.(1) data is k = 3.5 x
10~3[ug/L]~!. The epidemiologic data in Morales et
al. and the corresponding linear regression model are
shown in Fig. 7 as stars and a dotted line, respectively.
The health effect H(p) is defined as the probability in
Equation (6), that is:

H(p) = P|cancer; p). 7
We can further write:

H(p) = Hp + Ha(p), ®)

where Hg = Pg and Hy, = kX (p). This is a flexible
approach that can consider any other health effect
as well (skin cancer, etc.). Equation (8) distinguishes
between the health effect Hp due to the existing
background bladder cancer and the increased blad-
der cancer effect Hyy(p) purely due to As exposure.
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Fig. 8. The Moolgavkar model (modified by Crawford-Brown and
Hoffman). Experimental parameters include the cell transfer rates
kni (normal-to-initiated), k;; (initiated-to-tumor), k, (repair), and
the mitotic rate M at which initiated cells divide.

As defined above, H(p) is a probability expressing the
rate of the population expected to suffer a health ef-
fect based on As exposure to contaminated drinking
water.

3.2.2. A Nonlinear Exposure-Response Model

As an example from Group 2 we employed a
multistage carcinogenesis model from Moolgavkar
et al" and modified by Crawford-Brown and
Hoffman.® A conceptual representation of this
mechanistic model is given in Fig. 8 (boxes represent
the three assumed states of cells, and arrows represent
the transitions between these states). The model ex-
presses the probability that a normal cell will turn into
a tumor cell during an individual’s lifetime. Exper-
imental parameters describe the normal-to-initiated
cell transfer rate (k,;), the initiated-to-tumor cell
transfer rate (k;), and the mitotic rate (M) at which
initiated cells divide. In addition, the repair transfer
rate (k,) is a decreasing function of As concentration
representing the As interference with DNA repair
mechanisms. Using these parameters, a set of equa-
tions is derived describing the growth of cells over
the lifetime of an individual (see Appendix A). This
set of equations can be solved for some initial number
of normal cells in the infant, assuming that the lifetime
probability P of bladder cancer is equal to the number
of tumor cells generated for each initial normal cell at
a given As concentration during an individual’s life-
time. In this manner, the model effectively establishes
a composite relationship between As concentrations
and the lifetime probability of cancer caused by As.
Just as for the linear Equation (7), the health effect
H(p) is defined as the resulting probability P of the
multistage model, where the model parameters are
adjusted to fit given epidemiologic data. In Appendix
A we provide the parameters k,;, k;, M, and k, ob-
tained to fit the Morales et al. 19 bladder cancer data
for Taiwan with a male life expectancy of 73 years.
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The corresponding exposure-response curve is shown
(plain line) in Fig. 7 for the Taiwan population. Note
that if we use the same parameters k,;, ki, M, and k
but decrease the life span to 58 years to account for the
shorter life expectancy in Bangladesh (both male and
female life expectancy; data currency: July 2002, see
http://www.state.gov), we obtain for the Bangladesh
population an exposure-response curve with lower
lifetime probability of bladder cancer, as shown (dash-
dotted line) again in Fig. 7. As exhibited in Fig. 7, the
multistage model provides a carcinogenesis descrip-
tion of As on the natural DNA repair mechanism that
results in a nonlinear As-bladder cancer relationship.
Indeed, some scientists argue that the dose-response
relationship between ingested As and cancer may not
be linear and a threshold or sublinear response may
exist.(1?=21) The multistage carcinogenesis health ef-
fect H(p) curve starts at zero As concentration with
a small background value slightly over 0.006 pg/L for
the Taiwanese population (Fig. 7, plain line), similar to
that of the linear regression model (dashed line), and
an even lower background value of about 0.003 pg/L
for the Bangladesh population (dash-dotted line). At
low As concentrations X (at about 0-400 ug/L) the
H(p) increases in a sublinear manner, that is, the curve
moves below the tangent at any of its points in that
range of X values; then, for X greater than about
400 pg/L, H(p) increases supra-linearly, that is, the
tangent at any of the curve’s points lies below the
curve.

Each of the models presented above provides an
exposure-response relationship that can be used to
predict the health risk corresponding to the BME map
of As exposure in Bangladesh (Fig. 5). For illustration,
Fig. 9 shows a map of the health effect H(p) based on
the linear model of Equation (6). While Fig. 5 refers
to As exposure at shallow wells, Fig. 9 translates these
exposure values (via the exposure-response model)
into the associated health effects in terms of lifetime
probability of bladder cancer incidence.

In the exposure assessment Stage 1 we examined
the estimated As exposure errors derived from the
BME probability model fi. In the current stage we
combine this source of uncertainty with that of the
exposure-response models above (linear or nonlin-
ear) to obtain uncertainty information regarding the
health effect distribution across space. The PDF is a
valuable tool for studying uncertainty as it allows us
to study this very important issue of human exposure
in several ways. For example, in Stage 1 we used the
standard deviation as an exposure uncertainty mea-
sure, which is a common measure in statistical calcula-
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BME bladder cancer probability based on linear dose-response model
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Fig. 9. Spatial map of the health effect H(p) (expressed in lifetime
bladder cancer probability) over Bangladesh based on the linear
exposure-response model.

tions. The results of the present Stage 2, however, may
be of interest to scientists from different disciplines,
for example, epidemiologists or policymakers. A typ-
ical uncertainty measure used in these scientific areas
is the confidence interval (CI). Again, we can use the
integration PDF to derive, for example, the 68% CI of
the As concentration estimates X at each location p
of the mapping grid. These CI provide the size of the
intervals within which X values are expected to vary
with 68% probability. Given Equation (6), the com-
bined uncertainty is generally the convolution of the
uncertainties in X and k. Nevertheless, for simplicity
in this example we did not assume any uncertainty in
k and the background cancer probability parameters.
In view of Equation (6), the CI bounds of As concen-
trations are processed in a straightforward manner
to obtain the overall uncertainty for the health effect
H(p). The map in Fig. 10 displays the 68% CI of the
H(p) values across space, that is, under the above as-
sumptions there is a probability of 68 % that the H(p)
at each mapping location p will vary locally within
intervals as wide as those shown in the map.

3.3. Population Health Impact of Bladder
Cancer Due to Arsenic

In Stage 3 of holistochastic analysis we focus on
the assessment of the adverse effects at the popu-
lation level, which is of primary interest to public
health management and administration. To this end, a



524

Length of the 68% CI for linear dose-response model
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Fig. 10. Integrated uncertainty in holistochastic processing of
Bangladesh As health risk designated by the 68 % confidence inter-
val of the health effect H(p). The map shows that within a prob-
ability of 68%, the health effect H(p) will vary within a range of
values of the size shown at location p.

variety of indicators—simple and sophisticated—
have been proposed.”” A simple indicator is, for
example, the number of cancer cases observed per
100,000 people; another one is the number of people
per km? expected to develop the health effect in their
lifetime. In the following, the lifetime cancer probabil-
ity obtained earlier is combined with population data
in order to produce a useful measure of the popula-
tion health effect. The indicator used is the number of
people per km? expected to develop bladder cancer
in their lifetime.

The lifetime probability H(p) of bladder cancer
is calculated from Equation (8); demographics infor-
mation for Bangladesh was provided by the Center
for International Earth Science Information Network
(CIESIN). The Bangladesh population density dis-
tribution D(p) data are displayed in Fig. 11. The re-
sults of the holistochastic analysis based on the earlier
BME results as well as the input from health experts
are shown in Fig. 12. In particular, Fig. 12 depicts
a spatial map of the distribution of the population
damage L(p) representing the number of people per
km? with a lifetime bladder cancer development ex-
pectancy. Under the conservative assumption that all
the drinking water comes from shallow wells, the L-
value at each point of the map of Fig. 12 is simply
calculated as follows:

L(p) = D(p)H(p). )

Serre et al.
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Fig. 11. Population density map for Bangladesh.

Note that as water supply shifts to deep wells, Equa-
tion (9) can easily be modified to account only for
the fraction of the population getting its water from
shallow wells. The map identifies areas in Bangladesh
where it was estimated that as many as 45 lifetime can-
cer incidents are expected to occur per km? (roughly
corresponding to three incidents every four years for
a life span of 58 years). Such maps are very use-
ful for the public health planner and policymaker

Linear model: bladder cancer cases per km?
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Fig. 12. Map of the population damage L(p) (in people per km?)
for the linear exposure-response model.
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because they allow, for example, estimation of the cost
of treatment of population damages due to a partic-
ular health effect. This analysis offers an additional
level of information by combining Equations (8) and
(9). A more detailed expression for the population
damage emerges then as follows:

L(p) = Lg + Las(p), (10)
where
Lg(p) = D(p)Hp (11)
and
Las(p) = D(p)Has(p), (12)

that is, we can distinguish between the portion Lp(p)
of the population damage due to background bladder
cancer and the damage L 45(p) exclusively due to the
health effect caused by the presence of As in drinking
water.

3.4. Total Population Health Impact

Accuracy in health effect prediction is crucial
for subsequent stages of health planning and deci-
sion making. A meaningful analysis should, therefore,
incorporate the uncertainty involved at all different
stages of the predictions. In that manner, the results
for the health planner should incorporate an accumu-
lated variation that will reflect correctly the accruing
uncertainties at the different processing levels. Of-
ten, this accumulated variation shows in the form of
best-case and worst-case scenarios that, respectively,
translate, for example, into the predicted lower and
upper number of cancer cases. Best-case and worst-
case scenarios are important indicators, based upon
which health policies, regulations, and financial plans
can be structured. Consequently, it is vital to derive
these indicators using as many information resources
as possible and methodically monitor their uncer-
tainty throughout the process—both of which tasks
are skillfully and scientifically performed by BME and
the proposed holistochastic analysis.

In the preceding sections, we focused on the un-
certainty sources and included the uncertainty anal-
ysis with the results. Unlike other currently used
mapping methods, the BME approach allowed us to
account for uncertainties at the very basiclevel of data
inclusion. Its rigorous theoretical foundations make
possible a full-scale uncertainty analysis at the end of
the mapping process—a result of which is the inte-
gration PDF model and the estimation standard de-
viation map shown in Fig. 6. Then, given a particular
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dose-response model (the linear model of Equation
(6)), we defined the health effect H(p) in Equation (8)
and obtained the integrated uncertainties in Fig. 10
by using the 68% CI as an uncertainty measure. This
brings us in a position to provide the uncertainty in the
population health damage L(p) level, as well, given
its association with H(p) through Equation (9). The
68% CI of the estimated values of L(p) provides us
with a probability of 68% that the number of peo-
ple developing the health effect will range within the
CI upper and lower bounds calculated at each loca-
tion p. In the remaining, we discuss possible ways in
which this kind of information can be useful to health
planners.

A very useful risk assessment indicator is the pop-
ulation global damage indicator A, defined as:(?)

A= /VL(p) dv. (13)

According to Equation (13), A provides the total pop-
ulation damage (in number of affected people) over
an area V where the population damage is distributed
as L(p) people per km?. In our study, A refers to the
total number of lifetime bladder cancer incidents ex-
pected for the Bangladesh population. By integrat-
ing the L-values of Fig. 12 over the given popula-
tion density at each one of the estimation locations
p we obtain A for all of Bangladesh. The uncertainty
analysis for A is derived in this case directly from
the uncertainty in L. Specifically, we use the 68% CI
bounds of L to obtain the upper and lower bounds
for A. In other words, we use the lower and upper
values of population damage L that is expected with
a probability of 68%, and Equation (13) provides us,
respectively, with the best- and worst-case scenarios
for the particular CI. Using the linear Equation (6),
we estimated A = 801,878 cases to be lying within
the bounds [698,795; 1,158,881] of bladder cancer
cases.

Instead, if the background cancer probability
is excluded from the calculations, then we can use
Equation (13) to get the population global damage
indicator:

In view of the previous definition, A4, is the total
population damage (number of Bangladesh lifetime
bladder cancer incidents, in our case) purely due to
As over an area V where the population damage ex-
clusively due to As is given by L4s(p). Again, using
the linear Equation (6) and the 68% CI bounds of L,
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the net effect due to As is estimated as A 45 = 145,529
cases lying within the bounds [42,445; 502,532].

It is noteworthy that the population damage es-
timates in the present study were obtained using the
As dose-response data for bladder cancer incidence
in Taiwan reported by Morales et al.(!®) Based on
the discussion by Christakos and Kolovos,?? accu-
rate estimation in the case of Bangladesh requires
input from yet unavailable local dose-response mod-
els to account for the particular characteristics of the
Bangladesh population. In that sense, the previously
reported estimates regarding the linear model out-
come are based on the conservative scenario that
Bangladesh exhibits the same bladder cancer inci-
dence as Taiwan. The estimates for that model can
change considerably using the life expectancy adjust-
ment for Bangladesh that was applied to the nonlin-
ear model. Indeed, using the multistage carcinogen-
esis model (Equation (Al)) properly adjusted to the
Bangladesh life expectancy of 58 years (dash-dotted
line in Fig. 7), we find the total lifetime bladder cancer
incidents to amount A = 482,687 cases (compared to
an expected A = 988,659 cases for the Taiwanese male
life expectancy of 73 years using the solid-line model
in Fig. 7), whereas the net effect due to As is now
estimated to A 4; = 61,897 cases (down from A4, =
157,842 for the Taiwanese population).

As there are currently related epidemiologic
studies for Bangladesh in the works, in the previous
we have accommodated the illustration of BME and
the holistochastic approach using available informa-
tion for bladder cancer as an As health effect example,
and some conservative estimates for the framework
application. The scientist who wishes to make use of
the holistochastic approach needs to apply suitable
information and use proper KB for specialized case
studies, for example, dose-response models for target
populations or target groups, localized contaminant
data, population habits and trends, and so forth. It
is plausible that due to the relatively short life ex-
pectancy in Bangladesh and the possibly long latency
of bladder cancer (which makes it affect the older
population), exposed people in Bangladesh may die
of other causes before developing bladder cancer,
thus resulting in an even smaller bladder cancer in-
cidence than that reported in this work. The input
from different disciplines that contribute to studies
like this should allow for adjustments so that, even-
tually, useful information is provided. For example,
the mechanistic carcinogenesis model presented in
this work depends on adjustable parameters such as
the life expectancy parameter to fit its output to ex-
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perimental data like the ones reported by Morales
et al.(1

4. CONCLUSIONS

The well-known holistochastic framework of hu-
man exposure was used to study lifetime popula-
tion damage due to As in Bangladesh drinking wa-
ter. Within this framework, the BME mapping con-
cept offers rigorous theoretical tools to assimilate var-
ious kinds of knowledge bases (physical, epidemio-
logic, toxicokinetic, etc.) and produce useful results
for a broad spectrum of end-users. For illustration,
we presented a case study where knowledge bases
from various scientific fields were integrated, lead-
ing to highly informative maps of the As concentra-
tions in Bangladesh drinking water, as well as maps
of the related health effect (bladder cancer) on the
population.

We used the BME method to account for uncer-
tain information in a strict scientific manner. The rig-
orous assimilation of important knowledge bases (un-
certain or secondary data sources) can complement
the scientific reasoning of human exposure, whereas
formerly input was limited to hard data only. Deal-
ing with additional, albeit uncertain, information re-
sources is not a limiting factor. Instead, these re-
sources take over at the point where hard data cease
providing assistance and further channel research in
the correct direction. Subsequently, more accurate re-
sults are obtained in space-time within adequate con-
fidence levels. This is a very desirable feature in ar-
eas such as public health planning and policy making,
where every bit of useful information is crucial.

A human exposure framework has been por-
trayed, where interdisciplinary interaction becomes
the epicenter for the creation of mapping products
of key importance to health research, management,
and decision making. In the presence of adequate
information the combination of the powerful BME
stochastic mapping approach and interdisciplinary in-
put can prove to be substantially fruitful.

APPENDIX

Description of the Multistage Carcinogenesis
Model with Variable Repair Rate

The multistage carcinogenesis model is described
by the following set of differential equations:

WD) g o)+ N,

(Ala)
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(Alb)
and
dN(t) .
= = kN (o), (Ale)

where N, (¢) is the number of normal cells at instance
t; N;(t) is the number of initiated cells at instance
t; N(t) is the number of tumor cells at instance ; k,;
is the rate of transition from normal to initiated cells
(in probability -[T] " units); k; is the rate of transi-
tion from initiated to tumor cells (in probability -[ 7]’
units); &, is the repair rate constant from initiated to
normal cells (in probability -[7] ' units); and M is the
net growth rate for the pool of initiated cells (in prob-
ability -[T] "' units). M refers to mitosis (cell division);
therefore, the total number of cells naturally increases
with time.

First, the parameters k,;, ki, M, and k, are set to
fit the experimental data of Morales et al.(!®) using a
male life expectancy of 73 years corresponding to the
population in Taiwan. We start with one healthy cell,
that is, N,,(0) = 1 and N;(0) = N,(0) = 0. In that case,
as stated in the text, the lifetime bladder cancer prob-
ability is defined as P[cancer] = N, (t =73 years). We
used the following fitting constants: k,,; = 0.00075 per
day, ki =6 - 1077 per day, and the mitotic parameter
background rate of M = 0.002 per day. We considered
the repair rate k, to be a function of the As concen-
tration X, based on the following fitting equation:

k(C) = 0.015 — 7.10 * X°3, (A2)

where X is expressed in pg/L. Starting at ¢ = 0 days
we advance using increments of dt =5 days and solve
the Equations (Ala), (Alb), and (Alc) for a total of
26645 days = 73 years. We found the results not to
be significantly sensitive to perturbations in the in-
crement size dt. We iterate repeating solutions of the
differential equation system (A1) for a variety of con-
centrations in the range of 0-2,000 ug/L (e.g., in in-
crements of 100 ug/L) to obtain the P[cancer] model
values at these concentrations. A least squares fit of
these model points results in a polynomial function
that describes the dose-response process based on the
multistage carcinogenesis model. This function is rep-
resented by the solid line in Fig. 7 that reasonably
fits the experimental dose-response data by Morales
et al.(1

We subsequently adjusted the carcinogenesis
model for the Bangladesh life expectancy of 58 years.
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Again, we solved the Equations (Ala-c) using the
same increment of dt =5 days, and parameters k,;, kj,
M, and k, as above. In this case, however, we advanced
in time from ¢ = 0 days to a total of only 21,170 days =
58 years so as to account for the lower life expectancy
in Bangladesh (compared to Taiwan). The multistage
carcinogenesis dose-response curve obtained, which
applies to the Bangladesh population, is shown as the
dash-dotted curve in Fig. 7.
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