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Abstract: Modern spatiotemporal geostatistics can be used to efficiently assimilate 
salient and of varying uncertainty physical knowledge bases about 
atmospheric ozone, in order to generate and update realistic pictures of ozone 
distribution across space and time.  We use the BME method which manages 
to eschew the restrictive assumptions of competitive techniques (linearity, 
normality, physical model-free, overparameterization, etc.).  In addition, BME 
assimilates uncertain measurements and secondary (soft) information in terms 
of total ozone-tropopause pressure empirical equations, thus producing 
accurate predictions of the ozone values at unsampled locations in space.  By 
analyzing and processing data sets generated by different measuring 
instruments on board the Nimbus 7 satellite, the BME-generated composite 
space/time maps are more informative and accurate than those obtained by 
traditional data analysis techniques. 
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1. INTRODUCTION 

Ozone (O3 ) is a very reactive gas present in the stratosphere (90% of the 
total atmospheric O3 ) and the troposphere.  The ozone distribution shows a 
considerable variability across space and time, with a global average of 300 
DU  (corresponding to a 3mm column of O3  at standard temperature and 
surface pressure).  In addition its natural variability, the different levels of 
accuracy of the algorithms used to generate data from the measuring 
instruments introduce major sources of uncertainty in spatiotemporal O3  
modelling.  It is therefore very important to obtain a realistic picture of O3  
distribution across space and time [1].  This work demonstrates advanced 
spatiotemporal modelling techniques that integrate the various knowledge 
bases available about O3  (data collected at sparse SBUV measurement 
points, uncertain evidence, and secondary physical information) to predict 
the distribution of atmospheric O3  concentration values at unsampled 
locations in a mathematically rigorous and physically meaningful manner. 

2. OZONE MEASUREMENT INSTRUMENTS 

In this work we study the distribution of total ozone values across space.  
The term "total column ozone" refers to the amount of O3  in a column of air 
of unit area from the surface to the top of the atmosphere, and is estimated 
by measuring backscattered radiances of incoming solar radiation at 
wavelengths between 312 and 340 nm, as ahown in [2] and [3].  Two main 
groups of instruments are used to measure O3  concentrations, as follows [4]: 
(a) Total ozone mapping spectrometers (TOMS ), which are instruments 
generating measurements of the total column ozone in the atmosphere at 
different angles sideways from the path the satellite.  Using TOMS  
instruments, total O3  maps can be produced once a day. (b) The solar 
backscatter ultraviolet (SBUV ) instruments, which measure the ozone 
column separately in each of 12 superimposed atmospheric layers ([3] and 
[4]).  Using SBUV  instruments a global ozone map can be generated within 
7 days, approximately.  Both the TOMS  and the SBUV  instruments were 
on board the Nimbus 7 Spacecraft and the relevant datasets cover several 
years.  However, there are some concerns that the SBUV -based data may be 
less accurate than the TOMS -based data.  The present study used data 
obtained by the instruments onboard the Nimbus-7 satellite.  For illustration , 
the locations of the TOMS  measurements of total O3  obtained on July 6, 
1988 are indicated in Fig. 1 (small crosses).  The locations of the SBUV  
measurements during the same day are also shown in Fig. 1 (circles). 
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Figure -1. Grid coverage of satellite ozone measurements on July 6, 1988, for the TOMS 
  (plus markers) and SBUV (circles) instruments. 

3. SPATIOTEMPORAL MODELLING  AND 
MAPPING OF OZONE  DISTRIBUTION 

3.1 A Review of Modern Spatiotemporal Geostatistics 

Modern Spatiotemporal Geostatistics [5] provides a powerful framework 
for generation of informative maps of natural processes across space and 
time by accounting for general knowledge to define a space of plausible 
events and then restricting this space to be consistent with available site-
specific knowledge. A spatiotemporal random field (S / TRF ) X( p)  is used 
for a mathematically rigorous and physically meaningful representation of 
the distribution of O3  concentrations across space and time ([6], [7]).  The 
vector p = (s,t)  defines a point in the space s  and time t  domain. Given 
certain general knowledge about the entire O3  field and a set of site-specific 
data χ data (χ1 ,.., χm )  at points pdata = (p1 ,..., pm ) , the O3  studies are 
generally concerned with the estimation of the spatiotemporal O3  
distribution at a network of points   pk = ( pk1 ,.. ., pkl

) . 

 
In the context of MSG one seeks to derive the probability density 

functions (PDF ) f KB (χk )  that characterizes X( p)  at every point of the 
mapping grid in light of the physical knowledge sources considered.  The 
principle of maximum expected information is applied upon general 
knowledge bases (denoted by G -KB) such as physical laws, governing 
relationships, primitive equations, and space/time statistical moments.  This 
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results in an intermediate corresponding PDF    fG , which is then 
conditioned with the available specificatory KB (S -KB).  We adopt the 
widely used BME (Bayesian Maximum Entropy) technique of MSG, which 
employs the Bayesian conditionalization rule (bc ) to yield updated (also 
called integration or posterior) PDFs   fK

bc  that are consistent with the S –KB 

available , where K =G ∪S .  The O3  estimates   
ˆ χ k = ( ˆ χ k1 ,... , ˆ χ kl

)  at any set 
of grid points pk  are derived from the PDF  at pk  by means of a suitable 
and flexible criterion, depending on the study goals (e.g., the most probable 
O3  estimates, optimization of some cost function, etc.).  In the following, we 
consider a BME-based numerical experiment presented in sections 3.3-3.6, 
and we focus our attention on the subregion of Fig. 1 shown in Fig. 2. 

 

Figure –2 . Actual distribution of total ozone (in DU) obtained from the TOMS 
instrument on July 6, 1988. 

 

3.2 Spatial Correlation of Total Ozone Distribution 

Using the entire TOMS data set, in Figure 2 we show the actual map of 
total ozone, TO3 , for the western part of US as a reference.  In line with the  
S/TRF representation mentioned previously, the TO3  distribution is modeled 
by the spatial random field 
 

  TO3(s) = TO3(s) + X(s) , (1) 
 
where s  is a spatial location vector, TO3(s)  is the spatial trend of TO3 , and 
X(s)  is a zero mean spatially homogeneous random field of ozone 
fluctuations across space.  Given the TO3 , the TO3(s)  is extracted from the 
data with an exponential filter (see BMElib  in [8]), and the residual ozone 
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X(s)  hard data value is calculated from Eq. (1).  The covariance of X(s)  is 
modelled by the following equation, which is assimilated in the G -KB of 
BME: 
 

  cx (rij ) = c1e
−3r ij /a1 + c2e

−3r ij
2 /a2

2

, (2) 
 
where   rij = si − sj  is the spatial distance between any pair of locations in 
the atmosphere.  Model (2) is fitted to the experimental covariance values 
obtained from χ hard , so that   c1 = 75 ( DU2 ),   a1 = 15 (degrees),   c2 = 75  

( DU2 ),   a2 = 9  (degrees).  Each component of Eq. (12) accounts for half of 
the total variance of 150 ( DU2 ). 

3.3  Generating Soft Information for Atmospheric 
Ozone 

The atmospheric pressure at a given height is given by (see, e.g., [9]) 
 

  P = P0 e− H H0 ,   (3) 
 
where H  is the height above the surface and H0  is called the scale height of 
the atmosphere (approximately 7 Km or 4.3 miles).  The tropopause height 
Ht  is monitored by collecting the pressure Pt  at Ht .  Pt -files are usually 
obtained us ing observations and a model mapping global distribution.  In the 
present analysis, the necessary Pt -files were provided by the Langley 
Research Center.  For each value of Pt  we derive a soft PDF representing 
the probabilistic distribution of the total ozone TO3  values, which provides 
the physical basis for producing the soft information to be used by BME (see 
Approach 2 in Section 3.5 below), based on the relationship 

 

  TO3 = a0 + a1 log Pt .   (4) 
 
In the above,   a0 = TO3, 0 + aHt ,0 − a H0 log P0  and a1 = aH0  can be 
estimated by experimental data fitting.  We have considered the zero 
subscript parameters to correspond to some initial state values.  The a0  and 
a1 are viewed as random variables representing uncertainty sources.   

 
 For numerical illustration, Fig. 3 depicts a typical scatter plot of TO3  

vs. Pt  experimental values at concurrent points (shown with plus markers).  
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The general behavior of the physical TO3 - Pt  relationship (4) is represented 
well by the dotted line, for which a0  and a1  have been best fit to the 
experimental data.  However, due to the stochastic nature of Eq. (4), to each 
Pt -value corresponds an uncertain TO3 -value.  In order to obtain the 
probabilistic (soft) information representing the TO3  uncertainty, we first 
divide the data into classes of contiguous non overlapping Pt -intervals.  
Then, for each class of Pt -values we derive the experimental mean and 
variance of the corresponding TO3 -values, as well as theis PDFs.  Some of 
these PDF associated with three selected Pt -classes are plotted in Fig. 3, for 
illustration.  Using this procedure, we can assign a TO3  probability datum to 
each Pt  data point, thus representing the uncertainty in the TO3 -values. 

 

Figure -3. Scatter plot of total ozone measurements vs. tropopause pressure.  A physical 
  equation is fitted to the data from which soft PDF can be derived. 

 

3.4  Approach 1 

In the context of Approach 1 we assumed that the site-specific KB, S, 
consists solely of the hard TO3  data set at the SBUV measurement points 
(circles in Fig. 1).  In this case, a spatial regression-based technique (also 
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known as simple spatial kriging) can be used to estimate TO3  in the 
remaining area (i.e., at all points shown with small crosses in Fig. 1).  It is 
noteworthy that the simple kriging technique can be derived as a limiting 
case of the general BME approach under the S -KB restrictive conditions 
described above.  The corresponding TO3  map is shown in Fig. 4a.  A 
comparison with the actual map of Fig. 2 shows poor estimation accuracy 
away from the hard data points (circles).  Additionally, there is a 
discontinuity in the distribution of the estimated TO3  values along the axis 
inbetween the satellite paths (Fig. 4a).  This is rather an artifact of Approach 
1 not referring to a realistic scenario.  The TO3  estimation error standard 
deviations (σ e ) for Approach 1 is given by  
 

σ e (sk ) = [cx (0) − λ ii
M∑ cx (rik )]

1
2 , (5) 

 
where M is the number of TO3  data used in estimating the TO3  value at the 
grid point sk , and λ i  are the estimation weights calculated from the kriging 
system ([10]).  The σ e -map associated with the TO3  map of Fig 4a is 
plotted in Fig. 4b. 
 

 

Figure -4a.. Kriging map of total ozone estimates (in DU) using only hard data at the  
 SBUV points (shown in circles). 
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Figure -4b. The associated map of estimation error  standard deviations for Fig. 4a. 
 

 

3.5  Approach 2 

In Approach 2 we use site-specific soft information in addition to the 
hard data set.  As was discussed above (Section 3.3), the soft information in 
the form of local PDFs is derived from a physical equation relating TO3  and 
Pt  measurements obtained independently from the TOMS data.  In this case, 
the resulting BMEmean map is plotted in Fig 5a. 

 

Figure –5a. Map of the BME estimates of total ozone (in DU) using both hard data (at SBUV 
points, shown in circles) and soft information. 

3.6  Some comparisons 

As can be seen by comparing the BMEmean map (Fig. 5a) with the actual 
map of Fig. 2, Approach 2 leads to a noticeable improvement in TO3  
estimation across space.  This map is more realistic  as it does not suffer from 
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the artifact observed in Fig. 4.  The associated map of estimation error 
standard deviation (  σK ) values is obtained using the expression  

 

  σK (sk ) = [ dχk∫ (χk − xk )2 fK
bc (χ k)]

1
2 ,  (6) 

 
and is shown in Fig. 5b (the mean value of the TO3  fluctuation at the 

estimation point pk  is   xk = 0, in this case).  Note the substantial accuracy 
improvement where the mapping error decreases from a maximum of about 
15 DU  (Fig 4b) down to as low as 5 DU  (Fig 5b).  

 

Figure –5b. The associated map of estimation error standard deviations for Fig. 5a. 
 
 The kriging standard deviation (σ e ) considered in Approach 1 has been 

the subject of some criticism (see, e.g., [11]) being independent of the data 
values.  The BME standard deviation (  σK ), on the other hand, depends on 
the specific data set considered.  The   σK  can provide an adequate estimation 
error assessment when the shape of the PDF is not very complicated, 
otherwise a realistic assessment of the mapping error can be achieved using 
BME confidence sets, etc.   

 
 Furthermore, we calculated the differences between the estimated TO3  

values (Fig 4a and 5a) and the actual values (Fig 3) at all data points for 
which TO3  values are available from TOMS (small crosses in Fig. 1).  The 
histograms of the estimation errors are shown in Fig. 6 for Approach 1 
(dotted line) and for Approach 2 (plain line).  Clearly, the former has a 
sharper peak around zero estimation error, which implies that accounting for 
the physical equation the BME map of Approach 2 produced more accurate 
TO3  estimates at a much higher frequency than Approach 1.  In addition, the 
mean square error (MSE), i.e. the average of the squared estimation errors, 
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drops from 106.5 DU2  (Approach 1) down to 79.1 DU2  (Approach 2) -- 
an improvement of 26% in accuracy.  Another measure of error indicating 
bias is the mean error (ME), i.e. the plain average of estimation errors.  As is 
shown in Fig. 6, the ME is equal to –3 DU  when only hard data are used 
(indicating a slight bias), whereas the ME value drops to –0.8 DU  when 
both hard and soft data are used. 

 

Figure –6. Frequency istribution of spatial estimation errors of total ozone mapping 
obtained by BME (plain line) and spatial kriging (dotted line). 

4. CONCLUSIONS 

We demonstrated the usefulness and practicality of MSG techniques to 
assimilate data from various information sources (different instruments, 
empirical laws, etc.) and generate accurate maps of total ozone in the 
atmosphere.  The BME technique integrates sparse data obtained at the 
locations of the SBUV measurements with physical knowledge bases, as well 
as soft data obtained from the total ozone-tropopause pressure analysis 
involving an empirical physical equation.  Soft data is critical information 
that is rigorously assimilated by the BME method, thus yielding more 
accurate maps of total ozone than other techniques currently in use.  Future 
work will extend the numerical analysis to the use of SBUV data sets to 
construct maps of the ozone profile throughout the Earth.  Such maps will be 
important tools in the dynamic monitoring of ozone's distribution in the 
atmosphere, which has considerable financial, social, ecological and human 
health implications.  
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