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Among the challenges posed for environmental health scientists and integrated 
assessment modellers are exposure analysis and mapping of spatiotemporal pollutants in 
relation to their health effects. A general method for studying these effects of pollutants 
distributed in space and time was recently introduced in [1]. It is well known that human 
exposure to O3  can have acute and chronic health effects, see e.g. [2]. The proposed 
method was implemented using ozone (O3) concentration levels over the eastern US. The 
data used were provided by the Aerometric Information Retrieval System (AIRS) 
maintained by the US Environmental Protection Agency (USEPA). 
 
Although exposure refers to the airborne pollutant concentration at a specific point in 
space and time,  it does not stand for the the pollutant amount that will affect an organ in 
which important damage will occur. The variable that accounts for this quantity is 
burden, and for our case a knowledge of O3 burden is necessary to an unambiguous 
evaluation of health effects ([3]). Toxicokinetic (or pollutokinetic) equations are used to 
calculate the burden from exposure. These equations take into consideration any 
spatiotemporal exposure variations in addition to variabilities due to biological and 
physiological characteristics of the individual.  
 
The existence of the aforementioned variabilities and the uncertainties led to the use of 
spatiotemporal random fields (S/TRF, [4]) in order to represent the exposure distribution 
and the biological variables. According to this notion, the S/TRF domain is a space/time 
continuum. A S/TRF realization would be, e.g., a specification of the O3 exposure values 
at all space and time points. In this scheme randomness manifests itself as an ensemble of 
possible realizations of the exposure and biological variables distributions. A 
combination of the above along with the available knowledge bases and a sound 
epistemological framework constitute the Bayesian maximum entropy (BME) approach 
(BME; [4]) that has been used for this study.  
 
Using a sound epistemological framework means that the empirical investigation of space 
and time as a whole needs to be backed up by: (i) A geometry that best describes 
space/time. If a space/time continuum is considered that involves Euclidean spatial 
coordinates s = (s1,s2 )  in R2  and a temporal coordinate t  along the time axis T, a 
space/time vector p = (s,t)  should follow a suitable spatiotemporal metric structure 
which need not necessarily be Euclidean. In fact, the appropriate metric should be 
dictated by the knowledge base available for the proposed exposure S/TRF E(p)  varying 
withing the above continuum. (ii) A logical framework for integrating and processing 
various knowledge bases. More specifically, the total knowledge K  may include all kinds 
of valid knowledge available at a given moment and can be obtained by the competent 
scientist using effectively a scientific procedure. Two prime knowledge bases can be 
further distinguished within K : The first is the general knowledge base G, which may 
include different types of physical laws, logical relations, statements of fact, scientific 
theories, as well as hard and soft data.  



 
With respect to our study, the general knowledge G available about the O3 distribution is 
that the distribution is characterized by nonhomogeneous spatial patterns, nonstationary 
temporal trends and random local fluctuations. This information allowed for a choice of a 
proper  S/TRF model for the O3 exposure. The second knowledge base is called 
specificatory S . S  refers to our knowledge about the specific situation and includes two 
main groups of data available: Hard data and soft data. The former are measurements 
obtained from real-time observation devices, experiments on human subjects and other 
sources, whereas the latter may represent varying levels of understanding of uncertain 
observations leading to either a direct estimation of the probabilities or their indirect 
estimation from accumulated experience. For the present study the specificatory 
knowledge S consisted of the O3 data set provided by the AIRS-USEPA. 
 
The O3 data set includes 1-hour O3 concentrations (in parts per million) from 1228 
monitoring stations for an area that covers the eastern USA east of 95°W longitude and 
north of 25°N latitude. Note that the concentration values at the space/time points also 
stand for the exposure values for receptors located at these points. As described in [1], 
BME mapping provides us with O3 exposure estimates at any point in space and time for 
which observations are not available. The average O3 exposure E(p)  over a day period 
( t=24h) was calculated for a few days in July 1995 for a geographical region that 
includes New York City and Philadelphia (Figure 1). The outcome honors the data at 
points where measurements were taken, and the estimation error variances at unsampled 
points indicated a very good accuracy of the maps produced. The 24h averaging may 
smooth potential high peaks in the 1-hour O3 concentration profile, thus not making the 
study proper for a purpose such as control of compliance with certain ambient air quality 
standards. Yet, it is appropriate for the present work’s biological indicator and health 
effect analysis. Spatial exposure maps like the ones shown in Figure 1 enable detection of 
daily-averaged O3 exposure variations, as well as spatiotemporal exposure patterns of 
interest (e.g. trends) in health studies. 
 
As mentioned earlier, toxicokinetic (or pollutokinetic) models are used to predict burden  
distributions in the human organs and tissues as a result of exposure to pollutants. 
Compartment models [5] have been developed, that analyze the transfer and 
transformation processes occuring after the body has been exposed to a pollutant. The 
sub-category of physiological compartment models [6] has already been used [7] for the 
study of O3 health effects. A stochastic one-compartment pollutokinetic model was used 
for this study. Using this model and the daily-averaged O3 maps of Figure 1, maps of the 
burden B(p)  on a receptor at p = (s,t)  were plotted for a few days in July 1995 for our 
region of interest. These are shown in Figure 2 and demonstrate the spatiotemporal 
variability  of burden resulting from environmental and biological factors acting either 
separately or interacting with each other. Such maps can assist the study of several health 
risk related issues, such as the amount of burden on target organs that could have been 
prevented for a certain reduction of O3 exposures.  
 
While the burden maps refer to ‘representative’ individual receptors (say, of a specific 
cohort) there is also a need for an assessment of the absolute or relative impact of 



exposure on the population as a whole. To this end, one needs to relate the burden maps 
to the population health damage. There exist many factors, such as exposure duration, 
activities, receptors’ pre-existing health conditions, age groups, that are taken into 
consideration for the development of burden-health response models. These models relate 
the population health effect H( p)  with the O3 burden B(p)  in a manner that structual 
nonlinearity is accounted for, as well as biological uncertainties (inter- and intra-subject) 
(see [1]). Once H( p)  has been quantified, the use of health damage indicators can 
provide specific answers about the health damage on a community-wide basis. 
 
In the present study the population damage indicator Ψv( p)  has been used, which is the 
average local health damage to the population of the region v(s)  at time t  due to the 
health response H( p) for a specific health effect. Ψv( p)  is a also a function of the 
population density of receptors in the neighborhood v(s) . Its units are in number of 
receptors affected per km2. Figure 3a shows a map of Ψv( p)  that comes as a result of a 
certain health response H( p) . A variety of cohorts can be considered, leading to a 
multiplicity of Ψv( p) . For example, using a different parameter in the model that 
quantifies H( p) , with respect to some cohort characteristics other than the ones 
considered to create Figure 3a, leads to a different mapping of Ψv( p) , as shown in Figure 
3b. Another useful indicator that was defined was the dimensionless normalized local 
damage indicator ψ v( p) . This stands for the ratio of Ψv( p)  over the average damage 
ΨV (p) occurred at the global region V , of whose v(s)  is a subregion. The Ψv( p)  maps 
can help with the detection of areas where exposure has the highest probability to cause 
adverse health effects at the local population, whereas maps of the indicator ψ v( p)  show 
how much larger the health damage at a local area v(s)  is expected to be than the average 
damage of the entire region V . 
 
The study presented here exhibits important improvements over previous ones. Firstly, 
the exposure mapping method presented uses the general and powerful BME analysis. 
Moreover, toxicokinetics modelling was incorporated into spatiotemporal health effect 
analysis and mapping. In addition to that, nonlinear burden-response curves with random 
coefficients were considered. And it is also important that exposure, burden and health 
effects were considered from a holistic perspective. This approach can be considered as 
an investigation tool that may offer a useful stochastic description of human exposure and 
an important basis for further analysis.  
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Figure 1. Daily averaged O3 exposure maps (ppm) at a region of eastern US. 



 

 
 
Figure 2. Maps of daily accumulated burden (ppm) on receptors at a region of eastern 
US. 



 
 
Figure 3. Maps of the health damage indicator ΨV (p) (number of receptors affected/km2) 
for two different population groups on July 20.  


