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A study of the spatiotemporal health impacts of ozone exposure

GEORGE CHRISTAKOS AND ALEXANDER KOLOVOS
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Exposure analysis and mapping of spatiotemporal pollutants in relation to their health effects are important challenges facing environmental health scientists
and integrated assessment modellers. In this work, a methodological framework is discussed to study the impact of spatiotemporal ozone (O;) exposure
distributions on the health of human populations. The framework, however, is very general and can be used to study various other pollutants. The
spatiotemporal analysis starts with exposure distributions producing the input to pollutokinetic (or toxicokinetic) laws which are linked to effect models which,
in turn, are integrated with relationships that describe how effects are distributed across populations. Important characteristics of the environmental health
framework are holisticity and stochasticity. Holisticity emphasizes the functional relationships between composite space/time Oz maps, pollutokinetic models
of burden on target organs and tissues, and health effects. These relationships offer a meaningful physical interpretation of the exposure and biological
processes that affect human exposure. Stochasticity involves the rigorous representation of natural uncertainties and biological variations in terms of
spatiotemporal random fields. The stochastic perspective introduces a deeper epistemological understanding in the development of improved models of
spatiotemporal human exposure analysis and mapping. Also, it explicitly determines the knowledge bases available and develops logically plausible rules and
standards for data processing and human exposure map construction. The proposed approach allows the horizontal integration among sciences related to the
human exposure problem that leads to accurate and informative spatiotemporal maps of O3 exposure and effect distributions and an integrative analysis of the
whole risk case. By processing a variety of knowledge bases, the spatiotemporal analysis can bring together several sciences which are all relevant to the aspect
of human exposure reality that is examined.
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Introduction Exposure generally refers to the contact of a receptor
with the environmental pollutant. Usually, exposure is

This paper presents a general method for studying the health considered equal to the airborne pollutant concentration at a

effects of pollutants distributed in space and time. The
method is then implemented to study ozone (O3) concentra-
tion levels over eastern US. Ozone is photochemically
produced from the combination of volatile organic com-
pounds and oxides of nitrogen in the presence of sunlight.
Human exposure to high levels of O3 can have acute as well
as chronic health effects (McDonnell et al., 1983; Thurston
et al., 1992; McCurdy, 1994). Ozone levels have become
high enough over eastern US during the summer period to
cause significant damage to crops and vegetation. The O;
data set considered in this study includes ambient O3
concentration observations from the Aerometric Informa-
tion Retrieval System (AIRS) maintained by the US
Environmental Protection Agency (USEPA).
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specific point in space and time. Exposure concentration,
however, does not represent the amount of the pollutant that
accumulates in a target organ (i.e., an organ in which the
important damage will occur), for it ignores the biokinetic
and transformation properties of the pollutant in the body
(Leung, 1991; Schulte and Perera, 1993). The amount of O5
in the body that can exhibit harmful effects on a target organ
(e.g., lung) is denoted by an appropriate biological exposure
variable (leading to the definition of the so-called pollutant
biomarkers), which is not necessarily strictly proportional to
the exposure concentration (Christakos and Hristopulos,
1998). The main biological exposure variable considered in
this work is burden, which provides a measure of the
fraction of the inhaled pollutant that reaches target organs
and tissues of the receptor and is capable of affecting them.
Studies have shown that O; burden and receptor response
are correlated, and a knowledge of O burden is prerequisite
to an unambiguous evaluation of health effects (Hu et al.,
1992). The burden is calculated from the toxicokinetic (or
pollutokinetic) equations, which take into consideration
exposure variations in space/time as well as variabilities
linked to the biological and physiological characteristics of
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the individual. As a result, these equations can provide
information about the functional relationship between
exposure and burden, which is essential in the evaluation
of the assumptions underlying the health response models
and the assessment of the actual damage on human
populations due to O; exposure. It is worth-mentioning
that in some exposure studies, burden is considered
synonymous to dose. In modern human health practice,
however, burden is defined8063 as above, while the term
‘dose’ refers to the interaction rate between the biologically
active form and target organs in the receptor (Crawford-
Brown, 1997).

Due to the considerable physical uncertainty (caused by
physiographic characteristics, emission fluctuations, me-
teorological conditions, etc.) and biological variability
linked to the individual (pulmonary ventilation, body build,
etc.), the exposure distribution and the biological variables
are represented in terms of spatiotemporal random fields (S/
TRF; Christakos, 1992). The S/TRF domain is a space/time
continuum, in which space represents the order of
coexistence and time represents the order of successive
existence. Specification of the O; exposure values at all
points in a space/time continuum specifies a realization of
the S/TRF. Randomness manifests itself as an ensemble of
possible realizations regarding the distribution of the
exposure and biological variables.

All of the many questions about O3 health hazards divide
into three lines of investigation: define the exposure
conditions; relate exposure to burden in the body; and
detect adverse health effects and estimate population
damages. In this work, an efficient stochastic approach is
discussed for quantifying these lines of investigation. This
approach has three main parts as follows (see also Figure 1;
the precise meaning of the various symbols used in the
figure will become clear later in the text).

(a) Random field modelling can produce accurate O3
exposure (F) maps in space/time, given the knowledge
bases (K) available. An appealing feature of the mapping
approach is that it is mathematically rigorous as well as
epistemologically meaningful.

(b) From physiological, biochemical, metabolic, etc.,
data, the appropriate pollutokinetic equations can be
developed and solved to obtain the O3 burden (B) map.

(¢) The burden map is inserted into the probabilistic
health response and damage models to estimate the expected
health effect (') on a receptor, as well as the population
damage (V,, and ,)) due to O3 exposure.

Figure 1. An approach for studying the effects of O; exposure on
human populations K =knowledge bases (G= general knowledge and
S=specificatory knowledge), Vg and Ys=knowledge processing
operators, E=exposure map, B=burden on receptor, H=health
effect, ¥,, and 1, = population damage indicators.
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The approach above introduces a holistic perspective that
looks at the whole picture of human exposure assessment:
pollutant exposure and subsequent burden on the receptor,
health effects, and population damages. Each part of the
approach incorporates knowledge from a variety of sources.
The data used in part (a) are obtained from air monitoring, in
part (b) from biologic monitoring, and in part (c) from
health damage surveillance. These data are assumed to vary
within a domain that integrates space and time (neither
space nor time are fixed and can vary simultaneously). The
approach offers a sound physical interpretation of the
exposure and biological processes affecting human health,
and takes into account the uncertainty present in the
observation of these processes and the usually imperfect
knowledge bases available. It provides graphical informa-
tion about the composite space/time exposure pattern, which
is a considerable improvement over previous studies based
on purely spatial data analysis. Rigorous expressions of the
burden variability can be obtained in terms of the exposure
variation and the biologic properties of the receptors, which
have significant advantages over commonly used statistics
of individual receptor cases. Collectively, these capabilities
of the human exposure approach provide the means to
enhance individual and group health risk assessments. In the
following sections we will discuss in detail the various parts
of Figure 1.

BME exposure mapping

Various methods can be implemented to construct maps of
human exposure variables in space/time. Among other
things, a useful mapping approach should explain when and
how one can cope rationally with the uncertainty of
exposure and biological variables. The Bayesian maximum
entropy approach (BME; Christakos, 1992) achieves such a
task by a fruitful combination of three basic elements: the S/
TRF model, the knowledge bases available, and a sound
epistemological framework. More specifically, the variables
of interest are represented in terms of S/TRFs, which offer a
general framework for analyzing human exposure data
distributed in space/time. Various knowledge bases can be
used in human exposure analysis (e.g., general and
specificatory knowledge bases). From an epistemological
viewpoint, spatiotemporal mapping is a combination of both
the examination of hypotheses regarding human exposure
and the determination of estimates for the values of the
exposure and the biological variables involved.

Natural theories parameterized by space and time
variables are considered more basic than those that are
not. Human exposure mapping in a space/time continuum
(i.e., a continuous spatial arrangement combined with a
temporal order of events) involves two separate entities:
spatial coordinates s=(sy,s,) considered in the Euclidean
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space R? and a temporal coordinate ¢ along the time axis 7.
The coordinates (s,7) are defined on the Cartesian product
R*>xT. An exposure S/TRF E(p) is a collection of field
realizations e associated with the exposure values at the
points p=(s,t) of the space/time continuum; each realization
has a probability of occurrence denoted by P(e). Mathema-
tically rigorous definition of the S/TRF may be found in
Christakos (1992).

Viewing them separately, space and time are both
continua and, thus, they share all the properties that the
abstract notion of continuum possesses in general. But time
also has certain extra-continua physical properties, which it
does not share with any other continuum (e.g., recursivity is
an extra-continua property of time, but not of space); the
same is true of space. When space and time are brought
together, the extra-continua physical properties of space
integrate with those of time, producing a holistic space/time
in which the whole is greater than the sum of its parts. In
such a holistic environment, spatiotemporal connections
and cross-effects may control physical and biological
variations.

A system of pure axiomatic geometry does not suffice, if
geometry is to be applied to the natural space/time. What is
required is to establish a relation between the geometric
concepts of the abstract system with the natural processes of
the environmental system. To establish such a relation, one
must take into consideration the fact that, while mathema-
tical geometry is purely logical, physical geometry is
empirical. In other words, the empirical investigation of
space/time as a whole (including all forms of physical
knowledge /C available) should disclose the nature of the
mathematical geometry that best describes it. Consider, e.g.,
a point P in R*x T with space/time coordinates p=(s1,55,f),
so that an exposure S/TRF varying within this continuum is
written as E(p)=E(sy,s»,f) (Figure l)) The wavy line
denotes that the space/time vector OP = p may not, in
general, have the usual Euclidean metrical structure. In
order to determine a suitable spatiotemporal metric, the
physical knowledge KC available about £( p) may need to be
taken into consideration. An example is discussed in
Appendix A.

The total knowledge K used in human exposure analysis
may include all kinds of valid knowledge that are available
at a given moment and can be obtained by the competent
scientist using effectively a scientific procedure. One may
distinguish between two prime bases of knowledge: the
general knowledge base G (general in the sense that it is
vague enough to characterize a large class of exposure
situations), and the specificatory (or case-specific) knowl-
edge base S (i.e., knowledge about the specific situation).
The union of G and S is the total knowledge KX=GUS.

More specifically, G may include physical and biological
laws, logical relations, statements of fact, and theories. In
many cases, it is useful to establish a mathematical
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Figure 2. A point in the space—time domain R*xT.

formulation of G in terms of a series of functions of the
exposure realizations g, i.e., G: g.(g), «=0,1,. . .,N,. Criteria
involved in the choice of the g,’s include the requirement
that the stochastic expectations g, be calculable and that the
resulting equations be solvable with respect to the unknown
parameters. For illustration, consider the simple case
gi(e)=¢; then g, = E is the mean exposure. Similarly, if
g2(€) = (e—E)°, the G, = 0% is the exposure variance.
Data sets €44, available as specificatory knowledge S are
usually divided into two main groups as follows. S: 4=
(Ehard-Esof) =(E15- - -»Em), Where €p,q denotes hard data and
€sot denotes soft data. Hard data are measurements obtained
from real-time observation devices, experiments on human
subjects and nonhuman organisms, etc. The soft data may
represent varying levels of understanding of uncertain
observations leading to the direct calculation of the
probabilities or their indirect estimation from accumulated
experience (Christakos, 1998a and 1998b).

Spatiotemporal exposure mapping seeks estimates £, of
an exposure S/TRF E(p) at certain points p,€R*x T given
general knowledge and case-specific data. In most applica-
tions, the p, are unsampled points that lie on the nodes of a
space/time grid. Technically, one may distinguish between
spatial, temporal, and spatiotemporal exposure maps,
depending upon whether they capture a single instantaneous
snapshot (i.e., a picture), a sequence of successive snapshots
at a single geographical location (a time profile), or a video
sequence of successive spatial pictures (i.e., a movie). While
single-point mapping deals with one estimate ¢, at a time,
multi-point mapping is concerned with several interdepen-
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dent estimates &, = (¢,,&,,,...) simultaneously. BME
focuses on levels of human exposure analysis as they relate
to understanding: The spatiotemporal mapping of human
exposure variables should be both informative (a priori
information maximization given G) and cogent (a posteriori
probability maximization given S). This double epistemo-
logical goal produces estimates £, with the highest
probability (mode estimates), which are computed directly
as solutions of the BME exposure equations presented in
Appendix A, Equations A.1 and A.2. Mean exposure
estimates, percentiles, etc., are also obtained from the a
posteriori probability density function (pdf) of Equation
A.3. There are two fundamental operators involved in
Equations A.1-A.3: the Yg-operator that incorporates
general knowledge G, and the ) s-operator that incorporates
specificatory knowledge S. The operators can represent
objective and subjective forms of knowledge available in
exposure assessment (several of these forms are discussed in
Taylor, 1993). Explicit mathematical expressions for Jg and
Ys are available in the literature for a wide range of
applications (Choi et al., 1998; Christakos, 1998a and
1998b; Serre et al., 1998; references therein).

BME not only satisfies sound epistemological ideals and
incorporates physical knowledge bases in a rigorous and
systematic manner, but it also has certain other attractive
features. It does not require any assumption regarding the
shape of the underlying probability law (hence, non-
Gaussian laws are automatically incorporated). It leads to
nonlinear estimators, in general, and can model nonhomo-
geneous/nonstationary human exposure data. It is easily
extended to functional and vector exposure variables.
Depending upon the knowledge bases G and S considered,
many existing mapping techniques can be derived as special
cases of the BME approach. For example, by considering up
to second-order statistical moments and hard data only, the
space/time mapping method discussed in Christakos and
Vyas (1998a and 1998b) can be derived from Equation A.1
and A.2 of Appendix A. Geostatistical kriging is a special
case of BME. BME, also, leads to novel and more general
results that could not be obtained with traditional mapping
analysis.

In the following study, the specificatory knowledge S
consists of the O3 data set provided by the AIRS—USEPA.
This data set includes 1228 monitoring stations east of 95°
west longitude and north of 25° north latitude. At each
monitoring station, 1-h O3 concentration observations are
available which are considered as the 1-h Oz exposure
E/11(p), in parts per million, at the space/time point p=(s,?).
At this point, it might be appropriate to notice that, while O
concentration refers to a physical point p per se, O;
exposure is associated with a receptor located at the point p
(in the following, both interpretations of p will be used).
Widespread air pollution episodes observed during the
summer months are related to chemical processes and
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meteorological conditions that facilitate the photochemical
production of O; (Logan, 1989). At each geographical
location, the temporally averaged 1-h O3 exposure E( p) is
calculated from Equation B.1 of Appendix B. As is shown
in Equation B.1, the E(p) is a function of the exposure
duration 7, (in hours) during each day, and the exposure
frequency f. (in percentage), i.e., the fraction of total
exposure time during which the person is actually exposed.
Therefore, calculation of the exposure field E( p) requires
information about the space/time Oj distribution, the
exposure duration, and the exposure frequency. This leads
to a physical basis established by means of the space/time
domain ( p,7.) containing the pollutant. The 7. and £, may
play an important role in the assessment of potential health
effects (e.g., while exposure from lower O; concentrations
over long time periods produces no harmful effects on
sensitive receptors, the same total exposure delivered over
short duration at high levels can produce respiratory
problems; Ryan, 1991). The general knowledge G available
about the O; distribution is that the distribution is
characterized by nonhomogeneous spatial patterns, nonsta-
tionary temporal trends, and random local fluctuations. As a
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consequence, O3 exposure is represented in terms of the S/
TRF-v/pw model with a generalized spatiotemporal covar-
iance of the form of Equation C.1 in Appendix C. Equation
C.1 takes into consideration correlations and dependencies
of exposure values between different points in space/time.

On the basis of these two knowledge bases G and S, the
mapping Equation A.l and Equation A.2 of Appendix A
can be solved to provide O; exposure estimates at any point
in space/time where observations are not available. The
average O3 exposure E( p) during each day (i.e., 7.=24 h in
Equation B.1 of Appendix B) was calculated for a
geographical region in eastern US that includes New York
City and Philadelphia. While such an averaging could
smooth out high peaks in the 1-h O; profiles and, thus, may
not be appropriate to ascertain compliance with certain
ambient air quality standards (which was the goal of earlier
studies; Christakos and Vyas, 1998a), it is nevertheless
appropriate for the biological indicator and health effect
analysis of the present work. In Figure 3, spatial exposure
maps are plotted for a few selected days in July of 1995.
These maps can help us detect variations in the daily-
averaged O3 exposure across areas and identify spatiotem-
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Figure 3. Daily-averaged O3 exposure maps (ppm) at a region of eastern US.
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poral exposure patterns of considerable importance in health
studies (trends, etc.). Certain differences between spatial
and temporal exposure variations may be due to extra-
continua properties of space and time, topographic
characteristics of the region, urban activities, meteorological
conditions, etc. The exposure maps honor the data values at
points in which monitoring stations exist. Moreover, the
associated histograms of the estimation error variances at
unsampled points—not plotted here—demonstrated the
very good accuracy of the space/time O; exposure maps.

Pollutokinetic or toxicokinetic modelling

As is depicted in the outline of the human exposure
approach (Figure 1), there exist important links between O;
exposure and subsequent burden, health effect, and
population damage. The first link requires that O3 exposure
variations be transformed efficiently into burden (which is
the important variable, for it has a more direct connection
with potential health effects than airborne O; concentra-
tion). The transformation can be made by means of
pollutokinetic (or toxicokinetic) models that predict burden
distributions in the human organs and tissues, resulting from
exposure to pollutants. The terms ‘pollutokinetics’ or
‘toxicokinetics’ are similar to the term ‘pharmacokinetics’
which is the study of the rate of change in drug and
metabolite concentration in the body. Pollutokinetic model-
ling typically involves compartmental models, which are
particularly useful in the study of transfer and transforma-
tion processes that occur in the body following exposure to a
pollutant (Piotrowski, 1971). An important development in
the compartmental analysis of pollutokinetic data is the
advent of physiological models, in which each compartment
represents a well-defined physiological entity (Vinegar et
al., 1990). Several works have placed attention on the use of
physiological pollutokinetic (pharmacokinetic) models in
the study of O3 health effects (e.g., Miller et al., 1987).
Factors that may affect burden include the O5 distribution
and retention in the organs, the recirculation of O3 between
organs, and biochemical transformation. The burden
variability includes contributions from both the spatiotem-
poral and the intersubject variabilities (in the case of O3, the
former may contribute more than the latter). One-compart-
ment models are usually simplifications of a more complex
situation, but given the paucity of data one has to work with
in many cases, they provide a reasonable compromise,
especially when one’s final goal is a population level study.
In this study, we used the stochastic one-compartment
pollutokinetic model (first-order kinetics of pollutant
absorption and removal processes) presented in Christakos
and Hristopulos (1998). Assuming that the uptake rate is
proportional to the exposure concentration, the mathema-
tical expression of the burden B( p) on a receptor p=(s.f) is
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given by Equation D.1 of Appendix D (e.g., in parts per
million). As is shown in Equation D.1, the burden is a
function of an absorption rate \, (e.g., in mg t ' unit
exposure '), a removal rate constant )\, (t”'), and the
exposure map E(p) obtained in a previous section. In the
above model, burden provides a measure of the absorbed
quantity of the pollutant over time and, thus, it may offer a
more realistic estimation of the actual exposure than
airborne O3 concentration. Not all forms of burden,
however, constitute a health threat. In certain cases, it is
rather the biologically significant burden that is capable of
changing the state of health. To estimate this kind of burden,
one may then need to multiply the value obtained from
Equation D.1 by a transformation fraction that is calculated
experimentally (in many applications, though, this fraction
is unknown and, then, it is assumed to be equal to one;
Crawford-Brown, 1997). The pollutokinetic model above
predicts O; burden levels throughout the entire receptor.
More detailed pollutokinetic models can be also incorpo-
rated in the stochastic approach of Figure 1, which describes
highly nonuniform burden distribution to lung tissue,
transport, and chemical reactions of O3 in the respiratory
tract compartments, etc. (such models have been discussed,
e.g., in Overton et al., 1987).

It is worth-noticing that Equation D.1 of Appendix D
establishes a relationship between external exposure (Os
concentration) and internal exposure (burden on target
organ), which is physically meaningful as well as testable in
terms of biologic monitoring (e.g., chemical concentration
on body tissues or fluids). Model (D.1) has other important
features that can improve considerably our scientific
understanding of the human exposure processes. For
example, it provides an indication of the mechanisms by
which receptor exposure and organ burden are related. Also,
as is shown in Christakos and Hristopulos (1998), the model
can establish analytical expressions of the burden statistics
(mean, covariance, etc.) in terms of the exposure and rate
statistics.

Using the daily-averaged O; maps of Figure 3 and model
(D.1), burden maps for the geographical region of eastern
US are plotted for a few days during the month of July 1995
(Figure 4). For the purpose of the present simulation study,
the rate values A\,=0.7 and A\.=1.0 were assumed to derive
the burden maps of Figure 4. The choice of the rate values
depends on certain physiological parameters (pulmonary or
alveolar ventilation, retention, volume of distribution,
clearance, etc.; Droz, 1993). Typically, each set of space/
time burden maps is associated with a ‘representative’
receptor that has specific physiological and biological
characteristics (see also the discussion in the following
sections). The maps of Figure 4 demonstrate the spatio-
temporal variability of burden, which is the result of
environmental and biological factors, acting separately as
well as interacting with each other. On the basis of these
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Figure 4. Maps of daily accumulated burden (ppm) on receptors at a region of eastern US.

maps, several health risk-related issues can be studied, as
well. One can calculate how much of the burden on target
organs could be prevented if Oz exposures were reduced by
a certain amount. Given the considerable burden variability,
it is essential that the burden maps be compared with
acceptable burden values. To evaluate if the human
exposure is within the acceptable limits, the values of the
burden maps should be compared with the appropriate
health standards. The comparison should take into account
intersubject and intrasubject biological variations, as well.
Furthermore, in Figures 5 and 6, temporal O5 profiles and
the associated burden profiles are shown at three specific
geographical locations of the eastern US region considered
above (the coordinates are shown in the figures). Monthly
patterns of O3 exposure are clearly identifiable in Figure 5.
A range of A.-values were assumed in Figure 6 to account
for uncertainty: A.~=1.0, 0.35, and 0.06. An important
concept of burden kinetics is the half-life 7',=0.693/A,
which is equal to the time required for burden to be reduced
to 50% of its original value after uptake. The rate constant
e and the half-life T/, are useful tools to describe how O3
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exposure variability will affect burden levels in the body.
The smaller the ). is (or, the larger the 7/, is), the less
affected is the burden level by changes in exposure (e.g., the
longer it takes the burden to decrease when exposure ends,
or to reach a steady state when exposure is stable). For
Ae>1.0, the burden profile follows the daily exposure
variations well and it is, therefore, a very good indicator of
the exposure conditions. For A\.<0.35, burden is a rather
poor indicator of the exposure fluctuations (note the
differences in magnitude between burden profiles).
Semivariograms are stochastic tools that provide a
quantitative assessment of exposure and burden variations.
The semivariogram ~yg(7), T =t,—t,, of the exposure profile
and the semivariogram g(7) of the burden profiles above
are defined in Equation D.2 of Appendix D. The vg(7) and
~vp(7) functions are plotted in Figure 7. As it should be
expected on the basis of the preceding analysis, when
A>1.0, the exposure and burden semivariograms show
very similar behaviors. But they start to exhibit significant
differences in their shapes when \.<0.35. The shape of the
semivariograms at the origin and at large distances is of

tal Epidemiology (1999) 9(4)
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Figure 5. Daily-averaged O; exposure profile at three geographical
locations during the period June—September 1995.

particular importance for it provides information about the
behavior of the actual exposure and burden profiles. While a
quadratic shape of the semivariogram at the origin implies a
rather smooth temporal variation (as is the case, e.g., with
Ae=0.06), a linear shape indicates a more irregular variation
exhibiting significant fluctuations (A.=0.35 and 1.0). An
asymptotic behavior at large distances denotes a rather
stationary profile fluctuating around a constant mean
(Ae=0.35 and 1.0), but a linear shape implies a nonstationary
profile with temporal trends (A.=0.06).

Assessment of health effect and population damage

A number of studies have reported associations between O3
exposure and health effects (e.g., exposure of humans to O;
alters spirometric and permeability functions of the lung;
Lippmann, 1989; Horvath and McKee, 1994; Simpson,
1995). The health effects can be quantified by means of an
intake pathway process involving burden estimates. Burden
estimates may be, indeed, more relevant in the assessment
of health effects than exposure levels evaluated by airborne
monitoring O3 concentrations, because they take into
consideration the pollutokinetic properties of O; in the
body (Leung, 1991; Schulte and Perera, 1993). Physically
meaningful burden—health response models may be derived
at the individual receptor or at the population levels. In both
cases, the relationships are stochastic, reflecting the
uncertainty and the space/time variation of the human
exposure variables involved.

Burden—Response Curve
Quantitative relationships needed for health risk assessment
require information about the burden on the target tissue or
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Figure 6. Burden profiles associated with the O; exposure profile of
Figure 5: (a) A.=1.0, (b) A\.=0.35, and (c) A\.=0.06.

329



Christakos and Kolovos

A study of the spatiotemporal health impacts of ozone exposure

2

(a)
Mean daily ozone exposure semivariograms Burden semivariograms (A, = 1)
x10™ x10™

(s,,5)=(4274.71,2263.44) (8, .5,)=(4274.71,2263.44)

0
o 5 10 15 20 0 5 10 15 2
_4 —4
x10 x 10

(51 .52)=(4246.61 ,2360.94)

(=]

(s, .5,)=(4246.61,2360.94)

0
0 . B 10 15 20 o , 5 10 15 2
x 107 x 10

(=1

Burden semivariograms (le =0.06)
x10° x10™
(s, 5,)=(4274.71,2263.44)

Burden semivariograms (he =0.35)

(s, 5,)=(4274.71,2263.44)

[¢] 5 10 15 20 0 5 10 15 2

=1

(5, .5,)=(4246.61,2360.94)

0 5 10 15 2

=3

(s, 5,)=(4203.17,2195.20) (s, ,5,)=(4203.17,2195.20)

o 4 % 4
g g
a 2 2
[ 0
0 5 10 15 20 0 5 10 15 20
< (days) 1 (days)

Figure 7. Semivariograms of the O3 exposure and burden profiles of
Figures 5 and 6.

organ. The expected health response or effect H(p) on a
receptor p due to O3 burden B(p) may be expressed as a
frequency or a ratio. For example, H(p) could denote the
receptor’s expected frequency of pulmonary function
decrements (in forced expiratory volume, FEV;; West,
1992). This frequency is usually obtained via experimental
studies of control groups, in which we plot the burden on
receptors vs. the percentage of receptors that exceed a
specified FEV| level. The health effect H( p) is related to the
O; burden B(p) by means of a burden—response curve
FirlB,a,c] (see Equation E.1 of Appendix E). In addition
to the burden, the Fggr involves two other parameters: «,
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which is generally considered a random variable to indicate
uncertainty, and ¢, which is an exponent that determines the
shape of the curve (c=1, <1 and >1 are associated with
linear, sublinear, and supralinear curves, respectively). The
S/TRF model may offer an interpretation of the cause—
effect concept underlying Equation E.1. The use of logical
conditionals (e.g., B—H) requires us to admit various
possible realizations besides the actual (but unknown) one.
Then, burden B may be considered—from a stochastic
standpoint—as being a cause of the effect H if both B and H
occur in the observed realization, but in the vast majority of
the other realizations in which B does not occur, H does not
occur either.

By taking into consideration the external exposure—
internal exposure relationship introduced in Equation D.1 of
Appendix D, the Fgg model (E.1) may be linked to existing
empirical exposure—response relationships (like these
discussed, e.g., in McKee, 1994). It is noteworthy, however,
that when using the empirical exposure—response relation-
ships, much of the observed variation in the response may
be due to the use of ambient O3 concentration as a surrogate
for the actual burden on target tissues (Hu et al., 1992). This
is a problem that can be avoided by using the burden—
response model (E.1) instead of the empirical exposure—
response relationship. Equation E.1 may be assumed valid
for any receptor that belongs to a specific cohort (i.e., a
group of individuals with similar time/activity profiles).
Indeed, in addition to the burden on the target organs, a
number of cohort-related factors can potentially affect o and
¢ (e.g., Hazucha, 1993; Rombout and Schwarze, 1995).
These factors include: the exposure duration 7, [short term
(1-3 h), prolonged (>6—8 h), and long-term (months or
years) exposures are associated with different kinds of
health effects]; the activities of the receptors during
exposure (respiratory effects may occur at increased
exertion levels, even at low Oz exposure levels); pre-
existing conditions (e.g., receptors with pre-existing limita-
tions in pulmonary function may experience respiratory
problems with greater clinical significance than healthy
individuals); biological and physiological characteristics;
and age group of the receptors (older persons are more
sensitive to O3 exposure than young adults). In view of the
considerable uncertainty implied by all the above factors,
stochastic analysis represents the variables of Equation E.1
in terms of random fields. The stochastic analysis may
involve the pdf of each one of the above cohort factors (the
exposure duration pdf, the activity pdf, etc.), thus generating
a set of possible values for a and c¢. These pdf may be
obtained from field studies and/or the literature.

Mapping of Population Health Damage Indicators

The exposure conditions having been mapped in space/time
and related to burden on the body, and the expected health
effect on an individual receptor been quantified, the health
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damage on a community-wide basis needs to be assessed in
terms of health damage indicators. These indicators are a
prerequisite for environmental health policy and manage-
ment studies.

A simple population damage indicator ¥,(p) is the
average local health damage to the population of the region
v(s) at time ¢ due to the health response H( p). The ¥, (p) is
defined by the response—damage relationship of Equation
E.2 of Appendix E, and is a function of the density ©( p) of
receptors in the neighborhood of wv(s). The physical
significance of the local damage ¥, (p) depends on the
human health effect considered. If, e.g., H(p) is the
frequency (in percentage) of physiologic decrements in
the population of the region v(s), the ¥, ( p) will denote the
expected number of people with such problems in the region
(e.g., number of receptors affected/km?). From the popula-
tion damage, a useful normalized local damage indicator
1,(p) (dimensionless) can be defined as the ratio of ¥ (p)
over the average damage W (f) occurred at the global
region V (see Equation E.3 of Appendix E), ["'Du(s)]. The
1,( p) may be, e.g., the ratio of the anticipated local number
of incidents per unit area (people affected by O; exposure in
a specific county) over the anticipated global number of
incidents per unit area within the entire eastern US.

A possible health damage scenario for the eastern US
geographical region V considered in the previous sections is
simulated next. The values ¢ =0.5 and 1.5 were assumed for
the exponent of Equation E.1, i.e., both sublinear and
supralinear curves were used. These seem to be reasonable
choices given that several studies have shown that during
the period of intense exposure, damage is usually a
nonlinear function of burden (e.g., Rappaport, 1991).
Furthermore, it was assumed that a( p) is randomly varying
within the interval 1.63+0.05 for the sublinear model and
the interval 7.25+ 0.25 for the supralinear model. These
intervals account for the contribution of geographical and
temporal variabilities on the health effect. The population
density values were calculated on the basis of data obtained
from the US Bureau of Census (1992). Ozone exposure and
health damage analyses were carried out at an observation
scale that is consistent with the domain v(s) at which the
damage variables are observed. The mapping grid size was
selected on the basis of the area statistics of the counties.
Under these conditions, maps of the population damage
indicator W, (number of receptors affected/km?) are plotted
in Figure 8. The ¥, varies in space and time. Note the
considerable effect of the different burden—health response
curves assumed (¢=0.5 vs. ¢=1.5). As was the case with
similar exposure studies in the past, the ¥, pattern is
expected to be driven significantly by the population
distribution. Areas where exposure has the highest prob-
ability to cause adverse health effects at the local population
level can be detected with the help of the ¥, maps.
Furthermore, a map of the normalized damage indicator %,
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Figure 8. Map of the health damage indicator ¥, (number of
receptors affected/kmz) on July 20: (a) for ¢=0.5 and (b) for ¢=1.5.

is plotted in Figure 9. Unlike the ¥, maps, the 1), maps may
be not affected significantly by the shape of the burden—
response curve, for the latter appears in both the nominator
and the denominator of Equation E.3. Interpreted with
judgment (i.e., keeping in mind the assumptions made
above concerning the exposure, biological, and health
response parameters, the cohort characteristics, etc.), the
maps of Figures 8 and 9 may offer valuable insight
regarding the possible distribution of health damage on the
population due to O; exposure. For example, the population
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Figure 9. Map of the normalized health damage indicator 1,
(dimensionless) on July 20 for ¢=0.5.

health damage at a local area with v,,=5 is expected to be
five times larger than the average damage of the entire
region V, for a population of receptors belonging to a
specified cohort.

While the burden maps represent the actual exposure an
individual ‘representative’ receptor that belongs to a
specific cohort may receive in space/time, the damage
maps assess the absolute or relative impact of exposure on
the population as a whole. This is, clearly, due to the effect
of the population density. It may happen, e.g., that while the
area v(s;) shows higher burden levels (at the receptor’s
level) than the area w(sy), it nevertheless experiences
relatively smaller damage (at the population level) than
v(s,), due to its smaller population density. In other words,
the population damage maps possess a social policy
dimension that burden maps may have not.

The sequence of maps (exposure, burden, and health
damage) presented above (Figures 3—9 ) provides the means
to consider human exposure as a spatiotemporal system, by
looking at the whole picture—not just certain isolated parts.
Exposure, burden and health effects are considered in a
spatiotemporal continuum, which previous statistical stu-
dies did not allow (e.g., maps of purely spatial exposure
variability were studied by Hayes et al., 1988). Moreover,
Christakos and Vyas (1998a) have shown that spatiotem-
poral mapping can be considerably more accurate than
purely spatial mapping. By comparing possible exposure
maps with the corresponding population damage maps,
functional relationships may be identified and regulatory
standards analyzed in a probabilistic context.
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Discussion

Human exposure assessment to potentially harmful pollu-
tants is an important area from both the scientific research
and the health management standpoints. In earlier papers
(Christakos and Vyas, 1998a and 1998b), a method was
developed for studying the health effects of spatiotemporal
O3 exposure on human populations. Among the improve-
ments of the present work over these earlier studies are the
derivation of the previous exposure mapping method as a
special case of a more general and powerful (BME)
analysis, the incorporation of pollutokinetic modelling in
spatiotemporal health effect analysis and mapping, and the
consideration of nonlinear burden—response curves with
random coefficients.

The proposed approach relies on a conceptual model that
describes human exposure as a sequence of space/time maps
related to airborne exposure concentration, burden, health
effect, and population damage. This is a holistic perspective
that looks at the whole picture of human exposure
assessment—not only certain isolated parts. Holisticity
introduces an implicit theory of meaning as well as a theory
of knowledge. The unit of meaning is not a single part, but
rather a whole system of parts, which are interlinked and
interrelated in various ways. From an epistemological
viewpoint, holisticity holds that single hypotheses about
human exposure are not tested in isolation, but rather as
parts of larger complexes (examples of such complexes are
the environmental health paradigms; Christakos and
Hristopulos, 1998).

The holistic perspective reveals important functional
relationships between O3 exposure and subsequent burden,
health effect, and population damage. Key to studying these
relationships is the quantitative assessment of human
exposure variability in the space/time continuum. Random
field models—which rigorously represent the uncertainty,
variability, and imperfect knowledge characterizing most
human exposure variables—presuppose a continuum of
space/time points and then attribute the values of the human
exposure variables to these points. The space/time con-
tinuum is not coherent in the abstract mathematical sense; it
rather enforces coherence by means of empirical investiga-
tions. The choice of a space/time geometry must avoid
discrepancies between the natural geometry—as revealed
by physical knowledge—and the appropriate mathematical
geometry.

Composite space/time exposure maps are obtained using
BME analysis. From the BME mapping viewpoint, the issue
is not merely how to deal with data, but also how to interpret
and integrate them into the understanding process. In a
sense, this expands the study domain to include the observer
(environmental modeller) as well as the observed (exposure
distribution). The air monitoring method of determining
exposure to O3 has certain limitations, which in many cases

Journal of Exposure Analysis and Environmental Epidemiology (1999) 9(4)



A study of the spatiotemporal health impacts of ozone exposure

Christakos and Kolovos

prevent it from offering a realistic assessment of the actual
exposure a target organ has received. In this work,
pollutokinetic models have been used to overcome some
of these limitations. Although rather simple, one-compart-
ment pollutokinetics can offer an accurate representation of
the fate of the pollutant within the body. Inputs to the
pollutokinetic equation are the Oz exposure map and the
physiological/biological features of the receptor, and its
output is the space/time burden map. Each of these maps is
associated with a ‘representative’ receptor and its inter-
pretation should take into account important intersubject
and intrasubject biological variations. The burden map is, in
turn, related to the population health damage via an integral
operation that accounts for the burden—response association
and the population density distribution. Other factors—
such as exposure duration, activities, and pre-existing
conditions of the receptors, biological and physiological
characteristics and age groups—are taken into consideration
in the development of the burden—response curve. Health
damage maps are useful for generating or testing hypotheses
regarding the etiology of health deterioration (e.g., in terms
of O5 or other pollutants acting in synergy). The maps are
essential tools in the evaluation of alternative health
management strategies with respect to efficiency, cost,
etc.

While the burden distribution B implies the existence of
the active form of the pollutant in target organs or tissues, it
is the dose rate D, which determines the interaction rate
between the biologically active form and target organs and
tissues. The cumulative dose or simply dose D is the
cumulative quantity of the biologically active form
delivered to the receptor during the time period 74 in which
interactions between the biologically active form and target
organs or tissues take place. The 74 may be larger than the
exposure duration, because biologically active pollutants
are retained in the body even after exposure is terminated.
Unfortunately, in many cases, the 74 is not known, which
means that the dose cannot be calculated. The rigorous
incorporation of the dose distribution in stochastic human
exposure modelling requires parallel advances in experi-
mental techniques for determining D, and D.

A significant part of the present work was concerned
with aspects of scientific methodology. Indeed, given the
paucity of data (physiological, biochemical, etc.), certain
assumptions had to be made regarding the values of the
parameters of the pollutokinetic, burden—response, etc.,
models. Maps describing possible distributions of exposure,
burden, and health damage were produced, which should be
interpreted in the light of the above assumptions. Indeed, as
already mentioned, each set of maps may be associated with
a ‘representative’ receptor that belongs to a specific cohort.
Each set of maps can help the interested health scientist or
administrator derive conclusions about the expected ex-
posure effects for a specific cohort. Different cohorts should
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be associated with different sets of maps. Addressing itself
principally to the scientific business of spatiotemporal
human exposure mapping, this work does not necessarily
endorse any specific exposure standards. The proposed
method is best viewed as a tool for the investigator that may
offer a useful description of the human exposure data and an
important basis for further analysis.
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Appendix A

The usual physical knowledge available in many applica-
tions is the exposure covariance function cz(h,7)=exp(—h*/
a®>—7%/b%), where a and b are correlation coefficients
determined from the data, h2=(s2—s1)2 and 7'2=(tz—t1)2. A
geometric metric that is consistent with the empirical
covariance above is of the form |p| = /K + @’ /b.

The basic BME exposure equations are as follows
(Christakos, 1998b ):

%(Pmap) = / demapga (Emap) exp yg [Ema}ﬁpmap} )
a=0,1,...,N,,

(A1)
and

0

@yS{Esoftvexp yg [Emap;pnmp] }51/,:51': 0. (AQ)

BME analysis also provides the a posteriori (probability
density function) that incorporates the total knowledge /C,
1e.,

f/C(ek) = yS{ssoftuexp yg [Emap;pmap] }7 (A3)

where €map=(Eqatas €0)-
Appendix B

At each geographical location, the temporally averaged 1-h
O; exposure E( p) is calculated by:

E(p) = |Te(p)\_1/ dtf,(s,t —)Ey_j(s,t — 1),

7(Pp)
(B.1)

where 7, is the exposure duration (in hours) during each
day, and f; is the exposure frequency (in percentage), i.c.,
the fraction of total exposure time during which the receptor
is actually exposed.
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Appendix C

A metrical structure is defined for the exposure space/time
continuum that includes a spatial distance |h| = /(s,—s,)’
and an independent time interval 7=t,—¢;. Ozone exposure
is represented in terms of the S/TRF-v/u model with a
generalized spatiotemporal covariance of the form of
(Christakos, 1992):

kp(|h|,7) = c5(|h|)8(T) + AT TS(|h|) + BYRS(7)
+R'IT, (C.1)

where R:{|h|zy+l}u:0,1,2; T= {7—2#+1}1L:0,1,2; the
A:{(—l)wlap}u:o,l,z; B={(-1)"""b,},—0.1.2° and
I‘={(—1)”“411,1,}1,#:0,1’2 are vectors and matrix of known
coefficients. Other possible models are discussed in
Christakos and Hristopulos (1998).

Appendix D

Assuming that the uptake rate is proportional to the
exposure concentration, the burden on a receptor p=(s,t)
is given by (in parts per million):

B(p)

_ fé dt' Mo (s, t')E(s, t") exp(—¢: + (v), duringexposure (¢ < tp)
B(s, ty) exp(—(;), after exposure (t > o)

)

(D.1)

where ¢, = fédT)\e(S, 7); Ao is the absorption rate, A, is the
removal rate constant, and E( p) denotes the Oz exposure
map.
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The semivariograms of the exposure and burden profiles
are defined by, respectively:

() =3[BlL-+7) — B0 } D2)
v8(T) = 3[B(t +7) — B(t)]

Appendix E

Ozone burden B( p) and health effect H( p) are assumed to
be related by a burden—response curve of the form:

H(p) = Fpr|B] = a(p)B“(p), (E.1)

where a( p) is a random variable to indicate uncertainty, and
the exponent ¢ determines the shape of the curve.

The population damage indicator W, (p) is the average
local health damage to the population of the region v(s) at
time ¢ due to the health response H( p) of Equation E.1. The
W, (p) is defined by the response—damage relationship:

y(p) = |u(s)| /( ) ds'0(s—s ) H(s —s',t), (E.2)

where 0( p) is the density of receptors in the neighborhood
of u(s). A useful normalized local damage indicator can be,
also, defined as follows (dimensionless):

%(1’) = \Ilv(p)/\llV(t)a (E3)

where U, (H)=V ! [rdsO(p)H(p) is the average damage
over the global region V' [where VDu(s)].
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